Technology Sharing

Spring SimpleAsyncTaskExecutor learning

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

1. Introduction

  1. SimpleAsyncTaskExecutor is not a real thread pool. This class does not reuse threads. A new thread is created for each call. There is no maximum number of threads. It will cause serious performance problems when the concurrency is large.
  2. Creating threads in Java is not cheap, thread objects take up a lot of memory, and in large applications, allocating and de-allocating many thread objects creates a lot of memory management overhead;
  3. It will start a new task for each character and execute it asynchronously;
  4. Supports limiting concurrent threads through the concurrencyLimit property, that is, flow control; by default, flow control is not performed, that is, the number of concurrent threads is unlimited;

As far as I know, Spring Kafka's KafkaListener uses SimpleAsyncTaskExecutor, but it has not been used in other scenarios.

2. Use

1. No concurrent flow control

No concurrent current limiting is performed. Each time SimpleAsyncTaskExecutor.execute(runnable) is executed, a new thread will be created to execute the task asynchronously.

/**
 * 不带并发限流控制的 SimpleAsyncTaskExecutor
 */
public static void main(String[] args) {
    SimpleAsyncTaskExecutor executor = new SimpleAsyncTaskExecutor("my-test-");

    Runnable runnable = new Runnable() {
        @SneakyThrows
        @Override
        public void run() {
            Thread.sleep(1000L);
            System.out.println("当前线程: " + Thread.currentThread().getName());
        }
    };

    for (int i = 0; i < 10; i++) {
        executor.execute(runnable);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

Prints as follows:

当前线程: my-test-4
当前线程: my-test-10
当前线程: my-test-5
当前线程: my-test-3
当前线程: my-test-9
当前线程: my-test-7
当前线程: my-test-2
当前线程: my-test-6
当前线程: my-test-8
当前线程: my-test-1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

2. Perform concurrent flow control

Concurrency limiting is performed. Each time SimpleAsyncTaskExecutor.execute(runnable) is executed, a new thread will be created to execute the task asynchronously.

So what is the difference between concurrent current limiting and non-concurrent current limiting?

  • No concurrent current limiting: 10 threads execute concurrently;
  • Concurrency Throttle: If the concurrent threads are set to 3, only 3 threads can be executed concurrently at a time;
/**
 * 带并发限流控制的 SimpleAsyncTaskExecutor
 */
public static void main(String[] args) {
    SimpleAsyncTaskExecutor executor = new SimpleAsyncTaskExecutor("my-test-");

    // 并发线程限制
    executor.setConcurrencyLimit(3);

    Runnable runnable = new Runnable() {
        @SneakyThrows
        @Override
        public void run() {
            Thread.sleep(1000L);
            System.out.println("当前线程: " + Thread.currentThread().getName());
        }
    };

    for (int i = 0; i < 10; i++) {
        executor.execute(runnable);
    }
    
    // 会发现主线程被卡住,因为在 SimpleAsyncTaskExecutor 中会阻塞等待
    System.out.println("主线程执行完成");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

Prints as follows:

当前线程: my-test-3
当前线程: my-test-1
当前线程: my-test-2
------------------------------------------
当前线程: my-test-6
当前线程: my-test-5
当前线程: my-test-4
------------------------------------------
当前线程: my-test-8
当前线程: my-test-7
当前线程: my-test-9
------------------------------------------
主线程执行完成
当前线程: my-test-10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

3. Source code analysis

The source code of SimpleAsyncTaskExecutor is relatively small, so let's look at this class directly;

public class SimpleAsyncTaskExecutor extends CustomizableThreadCreator
    implements AsyncListenableTaskExecutor, Serializable {

    /**
    * -1 表示不进行并发限流
    */
    public static final int UNBOUNDED_CONCURRENCY = -1;

    /**
    * 0 表示其他线程等待其他线程执行完
    */
    public static final int NO_CONCURRENCY = 0;


    // 并发限流的实现对象
    // 并发限流就是靠这个类实现的
    private final ConcurrencyThrottleAdapter concurrencyThrottle = new ConcurrencyThrottleAdapter();

    @Nullable
    private ThreadFactory threadFactory;

    @Nullable
    private TaskDecorator taskDecorator;

    public SimpleAsyncTaskExecutor() {
        super();
    }

    public SimpleAsyncTaskExecutor(String threadNamePrefix) {
        super(threadNamePrefix);
    }

    /**
    * 设置并发线程数
    * 给 concurrencyThrottle 的 concurrencyLimit 字段设值
    * 默认 concurrencyThrottle 的 concurrencyLimit 的值为 -1,表示不进行并发限流
    */
    public void setConcurrencyLimit(int concurrencyLimit) {
        this.concurrencyThrottle.setConcurrencyLimit(concurrencyLimit);
    }

    /**
    * 当前是否是并发限流的
    * 其实就是看 concurrencyThrottle 的 concurrencyLimit >= 0 ?
    */
    public final boolean isThrottleActive() {
        return this.concurrencyThrottle.isThrottleActive();
    }


    /**
    * 常用的 execute()
    */
    @SuppressWarnings("deprecation")
    @Override
    public void execute(Runnable task) {
        execute(task, TIMEOUT_INDEFINITE);
    }

    /**
    * 执行给定的 task
    */
    @Deprecated
    @Override
    public void execute(Runnable task, long startTimeout) {
        Assert.notNull(task, "Runnable must not be null");
        Runnable taskToUse = (this.taskDecorator != null ? 
                              this.taskDecorator.decorate(task) : task);
        
        // 1. 如果需要进行并发限流,走下面的逻辑
        if (isThrottleActive() && startTimeout > TIMEOUT_IMMEDIATE) {
            this.concurrencyThrottle.beforeAccess();
            doExecute(new ConcurrencyThrottlingRunnable(taskToUse));
        }
        else {
            // 2. 不需要并发限流,直接执行 doExecute(task)
            doExecute(taskToUse);
        }
    }


    protected void doExecute(Runnable task) {
        // 1. 直接创建一个新的线程!!!
        // 这就是为什么 SimpleAsyncTaskExecutor 每次执行 execute() 都会创建一个新线程的原因
        Thread thread = (this.threadFactory != null ? 
                         this.threadFactory.newThread(task) : createThread(task));
        
        // 2. 调用 thread.start() 异步执行任务
        thread.start();
    }


    /**
    * ConcurrencyThrottleAdapter 只有两个方法,都是由父类实现的
    */
    private static class ConcurrencyThrottleAdapter extends ConcurrencyThrottleSupport {

        @Override
        protected void beforeAccess() {
            super.beforeAccess();
        }

        @Override
        protected void afterAccess() {
            super.afterAccess();
        }
    }


    /**
    * 包装了 Runnable 对象,并且本身也是 Runnable 对象
    * 装饰器模式
    */
    private class ConcurrencyThrottlingRunnable implements Runnable {

        private final Runnable target;

        public ConcurrencyThrottlingRunnable(Runnable target) {
            this.target = target;
        }

        @Override
        public void run() {
            try {
                this.target.run();
            }
            finally {
                // 主要是在 finally 块中执行 concurrencyThrottle.afterAccess()
                concurrencyThrottle.afterAccess();
            }
        }
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134

Through the above description, we have a simple understanding of SimpleAsyncTaskExecutor;

Without concurrent flow control, it is easy to understand that each execution of SimpleAsyncTaskExecutor.execute() will create a new thread;

We mainly look at how it performs flow control when concurrent flow control is performed;

// ---------------------- SimpleAsyncTaskExecutor ------------------------
public void execute(Runnable task, long startTimeout) {
    Runnable taskToUse = (this.taskDecorator != null ? 
                          this.taskDecorator.decorate(task) : task);
    
    // 1. 如果需要进行并发限流,走下面的逻辑
    if (isThrottleActive() && startTimeout > TIMEOUT_IMMEDIATE) {
        
        // 1.1 执行 this.concurrencyThrottle.beforeAccess()
        // 如果被并发限流的话会阻塞等待
        this.concurrencyThrottle.beforeAccess();
        
        // 1.2 此时没有被限流住
        // 将 task 包装为 ConcurrencyThrottlingRunnable
        // ConcurrencyThrottlingRunnable 的 run() 的 finally 块会释放资源
        // 使其他线程能通过限流
        doExecute(new ConcurrencyThrottlingRunnable(taskToUse));
    }
    else {
        // 2. 不需要并发限流,直接执行 doExecute(task)
        doExecute(taskToUse);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

this.concurrencyThrottle.beforeAccess() and ConcurrencyThrottlingRunnable.run() are both key points, let's analyze them separately;

1. concurrencyThrottle.beforeAccess()

You can see that it controls concurrent current limiting through synchronized and concurrencyLimit;

// ---------------------- ConcurrencyThrottleSupport ------------------------
protected void beforeAccess() {
    if (this.concurrencyLimit == 0) {
        // 不允许 concurrencyLimit == 0
        throw new IllegalStateException();
    }
    
    // 1. 存在并发限流的场景,this.concurrencyLimit > 0
    if (this.concurrencyLimit > 0) {
        
        // 2. 尝试获取 monitor 对象锁,获取不到的话在这里阻塞,等其他线程释放锁
        synchronized (this.monitor) {
            
            // 3. 如果当前并发线程 >= this.concurrencyLimit
            // 当前线程 wait 等待,直到其他线程唤醒它
            while (this.concurrencyCount >= this.concurrencyLimit) {
                this.monitor.wait();
            }
            
            // 4. 当前并发线程数 concurrencyCount++
            this.concurrencyCount++;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

2. ConcurrencyThrottlingRunnable

Let's look at the run() of this class;

// --------------------- ConcurrencyThrottlingRunnable -----------------------
private class ConcurrencyThrottlingRunnable implements Runnable {

    private final Runnable target;

    public ConcurrencyThrottlingRunnable(Runnable target) {
        this.target = target;
    }

    @Override
    public void run() {
        try {
            // 1. 执行目标 target.run()
            this.target.run();
        }
        finally {
            
            // 2. 执行 concurrencyThrottle.afterAccess()
            concurrencyThrottle.afterAccess();
        }
    }
}



// ---------------------- ConcurrencyThrottleSupport ------------------------
protected void afterAccess() {
    // 并发限流场景下
    // 先获取 monitor 对象锁,执行 concurrencyCount--,再唤醒 wait 中的线程
    if (this.concurrencyLimit >= 0) {
        synchronized (this.monitor) {
            this.concurrencyCount--;
            this.monitor.notify();
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

At this point, the analysis of SimpleAsyncTaskExecutor is complete;

In actual development, we should not use SimpleAsyncTaskExecutor to avoid catastrophic problems;