Technologieaustausch

Transformer-LSTM-Vorhersage |. Matlab implementiert die Multivariablen-Zeitreihenvorhersage von Transformer-LSTM

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

Transformer-LSTM-Vorhersage |. Matlab implementiert Transformer-LSTMMultivariate Zeitreihenvorhersage

Effektliste

Fügen Sie hier eine Bildbeschreibung ein

Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein
Fügen Sie hier eine Bildbeschreibung ein

grundlegende Einführung

1.Matlab implementiert die Multivariablen-Zeitreihenvorhersage von Transformer-LSTM, Transformer kombiniert das lange Kurzzeitgedächtnis von LSTMNeuronale NetzeMultivariate Zeitreihenvorhersage;

2. Die Betriebsumgebung ist Matlab2023b und höher;

3.Daten sindDatensatz, mehrere Features eingeben, eine einzelne Variable ausgeben, den Einfluss historischer Features berücksichtigen, Zeitreihenvorhersage mit mehreren Variablen, main.m ist das Hauptprogramm, führen Sie es einfach aus, alle Dateien werden in einem Ordner abgelegt;

4. Das Befehlsfenster gibt mehrere Indexauswertungen wie R2, MSE, RMSE, MAE, MAPE und MBE aus;

Fügen Sie hier eine Bildbeschreibung ein

Programmierung

  • Vollständiges Programm und Daten zum Herunterladen einer privaten Nachricht als Blogger-AntwortMatlab implementiert die Multivariablen-Zeitreihenvorhersage Transformer-LSTM


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测



%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

Verweise

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502