Technology Sharing

STM32 Intelligent Robot Navigation System Tutorial

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

Table of contents

  1. introduction
  2. Environment Preparation
  3. Intelligent Robot Navigation System Basics
  4. Code implementation: Implementation of intelligent robot navigation system 4.1 Data acquisition module 4.2 Data processing and navigation algorithm 4.3 Communication and network system implementation 4.4 User interface and data visualization
  5. Application scenario: Robot navigation application and optimization
  6. Problem Solving and Optimization
  7. Ending and Conclusion

1 Introduction

The intelligent robot navigation system combines various sensors, actuators and communication modules through the STM32 embedded system to achieve real-time planning, automatic navigation and data transmission of the robot path. This article will introduce in detail how to implement an intelligent robot navigation system in the STM32 system, including environment preparation, system architecture, code implementation, application scenarios, problem solutions and optimization methods.

2. Environmental Preparation

Hardware Preparation

  1. Development Boards: STM32F4 series or STM32H7 series development board
  2. debugger:ST-LINK V2 or onboard debugger
  3. sensor:Such as LiDAR, infrared sensor, IMU, etc.
  4. Actuator:Such as motors, steering gears, etc.
  5. Communication Module: Such as Wi-Fi module, Bluetooth module, etc.
  6. Display: Such as OLED display
  7. Button or knob: For user input and settings
  8. power supply:Battery

Software Preparation

  1. Integrated Development Environment (IDE):STM32CubeIDE或Keil MDK
  2. Debugging Tools:STM32 ST-LINK Utility或GDB
  3. Libraries and middleware: STM32 HAL library and FATFS library

installation steps

  1. Download and install STM32CubeMX
  2. Download and install STM32CubeIDE
  3. Configure STM32CubeMX project and generate STM32CubeIDE project
  4. Install necessary libraries and drivers

3. Basics of Intelligent Robot Navigation System

Control system architecture

The intelligent robot navigation system consists of the following parts:

  1. Data acquisition module: Used to collect distance, posture and other data in the robot environment
  2. Data processing and navigation algorithm module: Process and analyze the collected data and execute navigation algorithms
  3. Communications and Network Systems:Enable communication between the robot and the server or other devices
  4. display system: Used to display system status and navigation information
  5. User Input System: Set and adjust via buttons or knobs

Functional Description

The robot collects key data from its surroundings through various sensors and displays them in real time on the OLED display. The system uses SLAM (Simultaneous Localization and Mapping) algorithms and network communications to achieve real-time planning and navigation of the robot's path. Users can set it up with buttons or knobs and view the current status on the display.

4. Code implementation: realizing intelligent robot navigation system

4.1 Data Acquisition Module

Configuring LiDAR

Use STM32CubeMX to configure the UART interface:

  1. Open STM32CubeMX and select your STM32 development board model.
  2. In the graphical interface, find the UART pin that needs to be configured and set it to UART mode.
  3. Generate code and import it into STM32CubeIDE.

Code:

  1. #include "stm32f4xx_hal.h"
  2. #include "usart.h"
  3. #include "lidar.h"
  4. UART_HandleTypeDef huart1;
  5. void UART1_Init(void) {
  6. huart1.Instance = USART1;
  7. huart1.Init.BaudRate = 115200;
  8. huart1.Init.WordLength = UART_WORDLENGTH_8B;
  9. huart1.Init.StopBits = UART_STOPBITS_1;
  10. huart1.Init.Parity = UART_PARITY_NONE;
  11. huart1.Init.Mode = UART_MODE_TX_RX;
  12. huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  13. huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  14. HAL_UART_Init(&huart1);
  15. }
  16. void Read_Lidar_Data(float* distance) {
  17. Lidar_Read(distance);
  18. }
  19. int main(void) {
  20. HAL_Init();
  21. SystemClock_Config();
  22. UART1_Init();
  23. float distance;
  24. while (1) {
  25. Read_Lidar_Data(&distance);
  26. HAL_Delay(100);
  27. }
  28. }
Configuring the IMU

Use STM32CubeMX to configure the I2C interface:

  1. Open STM32CubeMX and select your STM32 development board model.
  2. In the graphical interface, find the I2C pin that needs to be configured and set it to I2C mode.
  3. Generate code and import it into STM32CubeIDE.

Code:

  1. #include "stm32f4xx_hal.h"
  2. #include "i2c.h"
  3. #include "mpu6050.h"
  4. I2C_HandleTypeDef hi2c1;
  5. void I2C1_Init(void) {
  6. hi2c1.Instance = I2C1;
  7. hi2c1.Init.ClockSpeed = 100000;
  8. hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  9. hi2c1.Init.OwnAddress1 = 0;
  10. hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  11. hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  12. hi2c1.Init.OwnAddress2 = 0;
  13. hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  14. hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  15. HAL_I2C_Init(&hi2c1);
  16. }
  17. void Read_IMU_Data(float* accel, float* gyro) {
  18. MPU6050_ReadAll(accel, gyro);
  19. }
  20. int main(void) {
  21. HAL_Init();
  22. SystemClock_Config();
  23. I2C1_Init();
  24. MPU6050_Init();
  25. float accel[3], gyro[3];
  26. while (1) {
  27. Read_IMU_Data(accel, gyro);
  28. HAL_Delay(100);
  29. }
  30. }

4.2 Data Processing and Navigation Algorithms

The data processing module converts the sensor data into data that can be used in the control system and performs necessary calculations and analysis.

SLAM Algorithms

Implement a simple SLAM algorithm for robot navigation:

  1. typedef struct {
  2. float x;
  3. float y;
  4. float theta;
  5. } RobotPose;
  6. RobotPose current_pose = {0.0f, 0.0f, 0.0f};
  7. void SLAM_Update(RobotPose* pose, float* distance, float* accel, float* gyro, float dt) {
  8. // 数据处理和SLAM算法
  9. // 更新机器人的位姿
  10. pose->x += accel[0] * dt * dt;
  11. pose->y += accel[1] * dt * dt;
  12. pose->theta += gyro[2] * dt;
  13. }
  14. int main(void) {
  15. HAL_Init();
  16. SystemClock_Config();
  17. UART1_Init();
  18. I2C1_Init();
  19. MPU6050_Init();
  20. float distance;
  21. float accel[3], gyro[3];
  22. float dt = 0.01f;
  23. while (1) {
  24. Read_Lidar_Data(&distance);
  25. Read_IMU_Data(accel, gyro);
  26. SLAM_Update(&current_pose, &distance, accel, gyro, dt);
  27. HAL_Delay(10);
  28. }
  29. }

4.3 Communication and Network System Implementation

Configuring the Wi-Fi Module

Use STM32CubeMX to configure the UART interface:

  1. Open STM32CubeMX and select your STM32 development board model.
  2. In the graphical interface, find the UART pin that needs to be configured and set it to UART mode.
  3. Generate code and import it into STM32CubeIDE.

Code:

  1. #include "stm32f4xx_hal.h"
  2. #include "usart.h"
  3. #include "wifi_module.h"
  4. UART_HandleTypeDef huart2;
  5. void UART2_Init(void) {
  6. huart2.Instance = USART2;
  7. huart2.Init.BaudRate = 115200;
  8. huart2.Init.WordLength = UART_WORDLENGTH_8B;
  9. huart2.Init.StopBits = UART_STOPBITS_1;
  10. huart2.Init.Parity = UART_PARITY_NONE;
  11. huart2.Init.Mode = UART_MODE_TX_RX;
  12. huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  13. huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  14. HAL_UART_Init(&huart2);
  15. }
  16. void Send_Data_To_Server(RobotPose* pose) {
  17. char buffer[64];
  18. sprintf(buffer, "Pose: x=%.2f, y=%.2f, theta=%.2f", pose->x, pose->y, pose->theta);
  19. HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
  20. }
  21. int main(void) {
  22. HAL_Init();
  23. SystemClock_Config();
  24. UART1_Init();
  25. UART2_Init();
  26. I2C1_Init();
  27. MPU6050_Init();
  28. float distance;
  29. float accel[3], gyro[3];
  30. float dt = 0.01f;
  31. while (1) {
  32. Read_Lidar_Data(&distance);
  33. Read_IMU_Data(accel, gyro);
  34. SLAM_Update(&current_pose, &distance, accel, gyro, dt);
  35. Send_Data_To_Server(&current_pose);
  36. HAL_Delay(1000);
  37. }
  38. }

4.4 User Interface and Data Visualization

Configure OLED display

Use STM32CubeMX to configure the I2C interface:

  1. Open STM32CubeMX and select your STM32 development board model.
  2. In the graphical interface, find the I2C pin that needs to be configured and set it to I2C mode.
  3. Generate code and import it into STM32CubeIDE.

Code:

First, initialize the OLED display:

  1. #include "stm32f4xx_hal.h"
  2. #include "i2c.h"
  3. #include "oled.h"
  4. void Display_Init(void) {
  5. OLED_Init();
  6. }

Then implement the data display function to display the robot navigation data on the OLED screen:

  1. void Display_Data(RobotPose* pose) {
  2. char buffer[32];
  3. sprintf(buffer, "x: %.2f", pose->x);
  4. OLED_ShowString(0, 0, buffer);
  5. sprintf(buffer, "y: %.2f", pose->y);
  6. OLED_ShowString(0, 1, buffer);
  7. sprintf(buffer, "theta: %.2f", pose->theta);
  8. OLED_ShowString(0, 2, buffer);
  9. }
  10. int main(void) {
  11. HAL_Init();
  12. SystemClock_Config();
  13. I2C1_Init();
  14. Display_Init();
  15. UART1_Init();
  16. I2C1_Init();
  17. MPU6050_Init();
  18. float distance;
  19. float accel[3], gyro[3];
  20. float dt = 0.01f;
  21. while (1) {
  22. Read_Lidar_Data(&distance);
  23. Read_IMU_Data(accel, gyro);
  24. SLAM_Update(&current_pose, &distance, accel, gyro, dt);
  25. // 显示机器人导航数据
  26. Display_Data(&current_pose);
  27. HAL_Delay(100);
  28. }
  29. }

5. Application scenario: Robot navigation application and optimization

Automated warehouse

Intelligent robot navigation systems can be used in automated warehouses to improve material handling efficiency and accuracy by planning and navigating paths in real time.

Smart Security

In smart security, the intelligent robot navigation system can realize autonomous patrol and monitoring, improving security effects.

Indoor Navigation

The intelligent robot navigation system can be used for indoor navigation, providing navigation services to users by building maps and planning paths in real time.

Smart Manufacturing

Intelligent robot navigation systems can be used in intelligent manufacturing to improve production efficiency and flexibility through autonomous navigation and operation.

⬇Help everyone organize the information of single chip microcomputer

Including stm32 project collection [source code + development documentation]

Click the blue words below to receive it, thank you for your support! ⬇

Click here to get more embedded details

For discussion and information on stm32, please send me a private message!

 

6. Problem Solving and Optimization

Common Problems and Solutions

Inaccurate sensor data

Ensure that the connection between the sensor and STM32 is stable and calibrate the sensor regularly to obtain accurate data.

Solution: Check whether the connection between the sensor and STM32 is firm, and re-solder or replace the connection wire if necessary. At the same time, calibrate the sensor regularly to ensure accurate data.

Navigation system is unstable

Optimize navigation algorithms and hardware configurations, reduce navigation system instability, and improve system response speed.

Solution: Optimize SLAM algorithm, adjust parameters, improve the accuracy and stability of positioning and map construction. Use high-precision sensors to improve the accuracy and stability of data collection. Select more efficient actuators to improve the response speed of the navigation system.

Data transfer failed

Ensure the stable connection between the Wi-Fi or Bluetooth module and STM32, optimize the communication protocol, and improve the reliability of data transmission.

Solution: Check whether the connection between the Wi-Fi or Bluetooth module and the STM32 is firm, and re-solder or replace the connection wire if necessary. Optimize the communication protocol to reduce data transmission delay and packet loss rate. Choose a more stable communication module to improve the reliability of data transmission.

The display shows abnormality

Check the I2C communication line to ensure that the communication between the display and the MCU is normal to avoid display abnormalities caused by line problems.

Solution: Check whether the I2C pins are connected correctly and ensure that the power supply is stable. Use an oscilloscope to detect the I2C bus signal to confirm whether the communication is normal. If necessary, replace the display or MCU.

Optimization suggestions

Data Integration and Analysis

Integrate more types of sensor data and use data analysis technology to predict and optimize environmental conditions.

Suggestion: Add more monitoring sensors, such as ultrasonic sensors, depth cameras, etc. Use cloud platforms for data analysis and storage to provide more comprehensive environmental monitoring and management services.

User interaction optimization

Improve user interface design to provide more intuitive data display and simpler operation interface to enhance user experience.

Recommendation: Use a high-resolution color display to provide a richer visual experience. Design a simple and easy-to-understand user interface to make it easier for users to operate. Provide graphical data display, such as real-time environmental parameter charts, historical records, etc.

Intelligent control improvement

Add an intelligent decision support system to automatically adjust the control strategy based on historical data and real-time data to achieve more efficient environmental control and management.

Recommendation: Use data analysis technology to analyze environmental data and provide personalized environmental management suggestions. Combine historical data to predict possible problems and needs and optimize control strategies in advance.

7. Closing and Conclusion

This tutorial details how to implement an intelligent robot navigation system in an STM32 embedded system, from hardware selection, software implementation to system configuration and application scenarios.