Technology Sharing

Analysis of usage scenarios, precautions, advantages and disadvantages of cache in development

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

1. Cache Overview

Cache is a data storage technology that allows applications to quickly obtain data from memory without having to read it from disk or other slower storage devices every time. In Java development, cache is often used to improve system performance, reduce the number of database accesses, and optimize resource utilization.

2. Cache usage scenarios

  1. High data repetitiveness: For example, for frequently queried data, such as popular product lists and users' recent browsing history, caching can avoid querying the database for each request, thereby improving response speed.

Example:

 // 假设有一个热门商品列表,需要频繁查询
List<Product> hotProducts = getHotProductsFromDatabase();

// 将热门商品列表缓存起来
Map<String, List<Product>> hotProductCache = new HashMap<>();
hotProductCache.put("hot_products", hotProducts);

// 当需要获取热门商品列表时,首先检查缓存是否已经存在
if (hotProductCache.containsKey("hot_products")) {
    hotProducts = hotProductCache.get("hot_products");
} else {
    // 如果缓存不存在,则从数据库获取并更新缓存
    hotProducts = getHotProductsFromDatabase();
    hotProductCache.put("hot_products", hotProducts);
}

// 使用缓存中的热门商品列表
for (Product product : hotProducts) {
    System.out.println(product.getName());
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  1. Low data update frequency: For data with low update frequency, such as user basic information and configuration parameters, the read and write pressure of the database can be reduced through caching.

Example:

// 假设有一个用户基本信息,更新频率较低
User user = getUserFromDatabase(userId);

// 将用户基本信息缓存起来
Map<String, User> userCache = new HashMap<>();
userCache.put(userId, user);

// 当需要获取用户基本信息时,首先检查缓存是否已经存在
if (userCache.containsKey(userId)) {
    user = userCache.get(userId);
} else {
    // 如果缓存不存在,则从数据库获取并更新缓存
    user = getUserFromDatabase(userId);
    userCache.put(userId, user);
}

// 使用缓存中的用户基本信息
System.out.println(user.getName());
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  1. Large data volume: For query operations with large data volumes, such as paging queries and aggregate queries, caching can reduce the database load and improve query efficiency.

Example:

// 假设有一个分页查询结果集,数据量较大
List<PageResult> pageResults = getLargeDataFromDatabase(pageNumber, pageSize);

// 将分页查询结果集缓存起来
Map<Integer, List<PageResult>> pageResultCache = new HashMap<>();
pageResultCache.put(pageNumber, pageResults);

// 当需要获取分页查询结果集时,首先检查缓存是否已经存在
if (pageResultCache.containsKey(pageNumber)) {
    pageResults = pageResultCache.get(pageNumber);
} else {
    // 如果缓存不存在,则从数据库获取并更新缓存
    pageResults = getLargeDataFromDatabase(pageNumber, pageSize);
    pageResultCache.put(pageNumber, pageResults);
}

// 使用缓存中的分页查询结果集
for (PageResult result : pageResults) {
    System.out.println(result.getContent());
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

3. Caching considerations

  1. Cache consistency problem: When data is updated, how to ensure that the data in the cache is synchronized with the database? The usual practice is to adopt a cache invalidation strategy, such as setting an expiration time, monitoring database changes, etc.

Example:

// 假设有一个用户信息,需要实时更新
User user = getUserFromDatabase(userId);

// 将用户信息缓存起来,并设置过期时间
Map<String, User> userCache = new HashMap<>();
userCache.put(userId, user);
userCache.get(userId).setExpirationTime(System.currentTimeMillis() + EXPIRATION_TIME_IN_MILLIS);

// 当用户信息更新时,需要清除缓存
userCache.remove(userId);

// 当需要获取用户信息时,首先检查缓存是否已经存在
if (userCache.containsKey(userId)) {
   user = userCache.get(userId);
} else {
   // 如果缓存不存在,则从数据库获取并更新缓存
   user = getUserFromDatabase(userId);
   userCache.put(userId, user);
}

// 使用缓存中的用户信息
System.out.println(user.getName());
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  1. Cache capacity limitation: The cache is not infinite. You need to plan the cache capacity reasonably according to the actual situation to avoid system performance degradation due to cache overflow.

Example:

// 假设有一个缓存容器,需要根据实际情况合理规划缓存容量
Map<String, Object> cacheContainer = new HashMap<>();
int maxCacheSize = MAX_CACHE_SIZE;
while (cacheContainer.size() > maxCacheSize) {
   // 清除最久未被访问的缓存项
   cacheContainer.remove(cacheContainer.firstKey());
}

// 当需要添加新的缓存项时,先检查容量是否已满
if (cacheContainer.size() < maxCacheSize) {
   // 添加新的缓存项
   cacheContainer.put(key, value);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  1. Cache security issues: The data in the cache may contain sensitive information, such as passwords, order amounts, etc., and corresponding encryption measures need to be taken to ensure data security.

Example:

// 假设有一个密码,需要进行加密处理后再缓存
String password = "my_password";
byte[] encryptedPassword = encrypt(password);
Map<String, byte[]> passwordCache = new HashMap<>();
passwordCache.put(userId, encryptedPassword);

// 当需要获取密码时,首先检查缓存是否已经存在
if (passwordCache.containsKey(userId)) {
   byte[] decryptedPassword = decrypt(passwordCache.get(userId));
   String passwordFromCache = new String(decryptedPassword);
   System.out.println("Password from cache: " + passwordFromCache);
} else {
   // 如果缓存不存在,则从数据库获取并更新缓存
   String passwordFromDatabase = getUserPasswordFromDatabase(userId);
   byte[] encryptedPassword = encrypt(passwordFromDatabase);
   passwordCache.put(userId, encryptedPassword);
}

// 使用缓存中的密码
System.out.println("Password from database: " + passwordFromDatabase);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

4. Advantages and disadvantages of caching

advantage:

  1. Improve system performance: Through caching, direct access to the database is reduced and the system response speed is improved.
  2. Reduce database load: Caching can effectively reduce the read and write pressure of the database, especially in high-concurrency scenarios.
  3. Simplify code logic: Through caching, complex query logic can be encapsulated into the cache service to simplify the client code implementation.

shortcoming:

  1. Data consistency issues: Due to the existence of cache, data inconsistency may occur, which requires additional design and management mechanisms to solve.
  2. Cache update delay: When data is updated, it may take some time for the data in the cache to be updated, which may cause data inconsistency.
  3. Cache management is complex: Issues such as cache capacity planning, invalidation strategy, and data synchronization require careful consideration and management by developers.

V. Summary:

In Java development, caching is a very important technology that can significantly improve system performance and stability. However, using caching correctly also requires developers to have certain experience and skills. Only by fully understanding the working principle and application scenarios of caching can we better play its advantages and avoid potential problems.