Teknologian jakaminen

Spark Basics Big Datan oppimiseen

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

Spark perusasiat

Lyhyt kuvaus

1. Kipinätyön suoritusominaisuudet:

(1) Koko kipinätyö käynnistetään suoritettavaksi vain, kun toimintooperaattori kohdataan.

(2) Tapattu useita kertoja, teloitettu useita kertoja

2. RDD: elastinen hajautettu tietojoukko

Joustavuus: datamäärä voi olla suuri tai pieni

RDD on samanlainen kuin kontti, mutta se ei tallenna tietoja, vaan laskentalogiikkaa.

Kun toimintooperaattori kohdataan, koko kipinätyö käynnistetään suoritettavaksi ensimmäisestä RDD:stä alkaen.

Data on vain virtaava suhde RDD:iden välillä, eikä sitä tallenneta.

Virtaavan datan määrä voi olla suuri tai pieni, joten sitä kutsutaan joustavuudeksi

hajautettu:

Spark tarvitsee olennaisesti datan lukemista HDFS:stä ja datalohkot voivat olla tulevaisuudessa eri datasolmuissa.

RDD:ssä virtaava data voi tulla eri datasolmujen lohkodatasta.

tietojoukko:

Laskentaprosessin aikana RDD voidaan pitää hetken konttina. Säiliössä on dataa, jota ei ole oletuksena tallennettu muistiin.

RDD:n tiedot voidaan tallentaa levylle myöhemmin.

Viisi tärkeintä RDD:n ominaisuutta: (täytyy kysyä haastatteluissa!)
1. RDD koostuu sarjasta osioita

1) MinPartitions-parametri tiedostoa luettaessa voi määrittää vain osioiden vähimmäismäärän. RDD-osioiden todellinen lukumäärä tiedoston lukemisen jälkeen määräytyy itse tietosisällön ja klusterin jakautumisen perusteella.

2) Jos asetettujen minPartitions-määrä on pienempi kuin lohkojen lukumäärä, osioiden lukumäärä määräytyy itse asiassa lohkojen lukumäärän mukaan.

3) Kun soitat satunnaistoiston luovalle operaattorille, voit syöttää numeroPartitionsin (esimerkiksi: groupby()), mikä voi itse asiassa muuttaa RDD:n osioiden määrää Se, kuinka monta osiota määrität, määrittää kuinka monta osiota lopullinen RDD tekee omistaa.

4) Tiedosto tallennetaan HDFS:ään lohkojen muodossa. Jos tiedosto ei saavuta oletusarvoa 128M, se tallennetaan myös lohkoon.

Aluksi RDD:n osioiden lukumäärä määräytyy dataa lukevien lohkojen lukumäärän mukaan.

Jälkimmäisen RDD:n osiodata KV-toimintoa lukuun ottamatta vastaa edellisen RDD:n osiotietojen loogisen käsittelyn tulosta. Oletusarvoisesti, jos myöhempiä osioita ei käsitellä, kaikkien seuraavien RDD:iden osioiden määrä riippuu ensimmäisestä RDD:stä.

Lopullisessa RDD:ssä on useita osioita, ja näet useita tulostiedostoja HDFS:ssä tulevaisuudessa (HDFS -> RDD -> HDFS)

2. Operaattori toimii jokaisessa osiossa (jokainen osio käsitellään)
3. RDD:n ja RDD:n välillä on joitain riippuvuuksia

1) Luottaa suppeasti yksi-yhteen-suhteeseen, jossa tiedot tietystä osiosta edellisessä RDD:ssä menevät vain yksilölliseen osioon seuraavassa RDD:ssä (tai useat aikaisemmat osiot voivat siirtyä seuraavaan osioon)

2) Yksi-moneen-suhde, joka on laajasti riippuvainen tietystä osiosta edellisessä RDD:ssä, siirtyy eri osioihin myöhemmässä RDD:ssä. Voit myös arvioida, syntyykö sekoitus.

3) Koko kipinätyö jaetaan useisiin vaiheisiin laajojen riippuvuuksien lukumäärällä, Num(vaihe) = Num(laajat riippuvuudet) + 1

4) Kun kohtaat operaattorin, joka tuottaa sekoituksen, se sisältääIlmiö, jossa tietoja kirjoitetaan edelliseltä RDD:ltä levylle ja luetaan tietoja levyltä seuraavalle RDD:lle.

Huomautus: Kun suoritus käynnistetään ensimmäisen kerran, levyllä ei ole tietoja, joten suoritus alkaa ensimmäisestä luodusta RDD:stä.

Kun sama suoritus käynnistetään toistuvasti, samalle DAG-suunnaiselle asykliselle graafille, suoritus alkaa suoraan RDD:stä sekoituksen jälkeen (jättäen pois edellisen RDD:n tietojen kirjoitusprosessin levylle), ja se voidaan lukea suoraan levyltä. .

5) **Yhdessä vaiheessa,RDD:llä onUseilla osioilla on useita rinnakkaisia ​​tehtäviä.

4. Kv-operaattori voi toimia vain kv:n RDD:llä.
5. Spark tarjoaa optimaalisen tehtävälaskentamenetelmän, joka siirtää vain laskelmia, mutta ei tietoja.

Yksi Spark-suunnittelun periaatteista ontietojen lokalisointi(Data Locality), eli yritä saada laskentatehtävät suoritetuksi solmussa, jossa data sijaitsee, mikä vähentää verkon tiedonsiirtoa.

Spark-instanssi: sanamäärä
object WordCount2 {
  def main(args: Array[String]): Unit = {
    //创建spark配置文件对象
    val conf: SparkConf = new SparkConf()
    //设置运行模式
    //如果是本地local模式运行的话,需要设置setMaster
    //将来如果是集群进行,将这句话注释即可
    conf.setMaster("local")
    //设置spark作业的名字
    conf.setAppName("wordcount")

    //创建spark core上下文环境对象
    val sc: SparkContext = new SparkContext(conf)
    //===================================================================================

    //读取文件,每次读取一行
    //RDD是spark core中的核心数据结构,将来运行的时候,数据会在RDD之间流动,默认基于内存计算
    val linesRDD: RDD[String] = sc.textFile("spark/data/wcs/*")
    //    println(s"linesRDD的分区数:${linesRDD.getNumPartitions}")

    //一行数据根据分隔符分割
    val wordRDD: RDD[String] = linesRDD.flatMap(_.split("\|"))
    //    println(s"wordRDD的分区数:${wordRDD.getNumPartitions}")


    //将每一个单词组成(word,1)
    val kvRDD: RDD[(String, Int)] = wordRDD.map((_, 1))
        println(s"kvRDD的分区数:${kvRDD.getNumPartitions}")

    //根据键进行分组,并设置分区数为 5
    val kvRDD2: RDD[(String, Iterable[(String, Int)])] = kvRDD.groupBy(_._1,numPartitions = 5)
        println(s"kvRDD2的分区数:${kvRDD2.getNumPartitions}")

    val resRDD: RDD[(String, Int)] = kvRDD2.map((e: (String, Iterable[(String, Int)])) => (e._1, e._2.size))
        println(s"resRDD的分区数:${resRDD.getNumPartitions}")

    //打印
    resRDD2.foreach(println)

    //指定的是所要写入数据的文件夹的路径
    //spark如果是local本地运行的话,会将本地文件系统看作一个hdfs文件系统
    resRDD.saveAsTextFile("spark/data/outdata1")

  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
RDD:n Sparkissa kutsumia toimintoja kutsutaan operaattoreiksi

Operaattorit on jaettu kahteen luokkaan:

1. Muunnosoperaattori (RDD -> RDD, käsittelylogiikka)

2. Toimintooperaattori (käynnistää työn suorittamisen)

1. Muunnosoperaattori
1) Kartta
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Demo1Map {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local")
    conf.setAppName("map算子演示")
    val sc: SparkContext = new SparkContext(conf)

    val lineRDD: RDD[String] = sc.textFile("spark/data/students.txt")
    //map操作算子:将rdd中的数据依次取出,传递给后面函数逻辑,将计算后的数据返回到新的rdd中
    //将rdd中的数据依次取出,处理完的数据返回下一个rdd直接继续执行后续的逻辑
    val rdd2: RDD[(String,String,String,String,String)] = lineRDD.map((line: String) => {
      println("==============处理后的数据========================")
      val array1: Array[String] = line.split(",")
      (array1(0),array1(1),array1(2),array1(3),array1(4))
    })

    //foreach是一个行动算子,遇到行动算子,触发作业执行
    /**
     * 转换操作(转换算子中定义了操作逻辑)仅仅是定义了数据应该如何被转换,而不会立即执行。
     * 只有当需要计算一个结果时(即调用行动算子时),才会执行。
     * 打印结果:
     * ==============处理后的数据========================
     * (1500100001,施笑槐,22,女,文科六班)
     * ==============处理后的数据========================
     * (1500100002,吕金鹏,24,男,文科六班)
     *每次调用行动算子(foreach)打印一条数据,都会是整个RDD重新执行一次(所有RDD的执行关系是一个有向无环图)
     */
    rdd2.foreach(println)

  }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
2) suodatin
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Demo2Filter {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local")
    conf.setAppName("map算子演示")
    val sc: SparkContext = new SparkContext(conf)

    //===============================================================
    val lineRDD: RDD[String] = sc.textFile("spark/data/students.txt")
    //需求:过滤出所有的男生
    //filter转换算子:将rdd中的数据依次取出,传递给后面的函数,跟map一样,也是依次传递一条
    // 若不匹配,则无数据在RDD间流动,在下面执行.foreach(println)时也无数据进行打印,
    // 但是判断中的println()属于scala,并不受影响
    val genderRDD: RDD[String] = lineRDD.filter((line: String) => {
      var b: Boolean = false
      if ("女".equals(line.split(",")(3))) {
        println("============这是女生==================")
      } else {
        println("============这是男生==================")
        b = "男".equals(line.split(",")(3))
      }
      b
    })

    genderRDD.foreach(println)

  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
3) litteä kartta
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Demo3FlatMap {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local")
    conf.setAppName("map算子演示")
    val sc: SparkContext = new SparkContext(conf)

    //===============================================================
    val lineRDD: RDD[String] = sc.textFile("spark/data/wcs/words.txt")

    /**
     * flatMap: 将rdd中的每一条数据传递给后面的函数,最终将返回的数组或者是序列进行扁平化,返回给新的集合
     * 由于flatMap会“扁平化”结果,因此words RDD将包含所有分割后的单词,而不是单词数组(返回一个元素为单个单词的集合)。
     * 打印结果:
     * ===============一条数据====================
     * hello
     * world
     * ===============一条数据====================
     * java
     * hadoop
     * linux
     */
    val rdd1: RDD[String] = lineRDD.flatMap((line:String)=>{
      println("===============一条数据====================")
      line.split("\|")
    })

    rdd1.foreach(println)


  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
4) näyte
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Demo4Sample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setMaster("local")
    conf.setAppName("map算子演示")
    val sc: SparkContext = new SparkContext(conf)

    //===============================================================
    val lineRDD: RDD[String] = sc.textFile("spark/data/students.txt")

    /**
     * sample抽样,1000条数据,抽0.1比例,结果的数量在100左右
     * 这个函数主要在机器学习的时候会用到
     * withReplacement :
     * 为True时,抽样结果中可能会包含重复的元素。
     * 为False时,抽样结果中不会包含重复的元素。
     * fraction:这是一个浮点数(Double),指定了抽样的比例,取值范围在[0, 1]之间。
     */
    val rdd1: RDD[String] = lineRDD.sample(withReplacement = false, fraction = 0.1)

    rdd1.foreach(println)
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
5) GroupBy
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Demo5GroupBy {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("groupBy")

    val sc: SparkContext = new SparkContext(conf)

    //===================================================
    val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
    //求每个班级的平均年龄
    val arrayRDD: RDD[Array[String]] = linesRDD.map((line: String) => line.split(","))

    //像这种RDD中的元素是(key,value)类型的,我们将这种RDD称之为键值对RDD(kv格式RDD)
    val clazzWithAgeRDD: RDD[(String, Int)] = arrayRDD.map {
      case Array(_, _, age: String, _, clazz: String) =>
        (clazz, age.toInt)
    }

    /**
     * groupBy算子的使用
     *
     * 1、groupBy的算子,后面的分组条件是我们自己指定的
     * 2、spark中groupBy之后的,所有值会被封装到一个Iterable迭代器中存储(与scala中不同)
     * 输出:
     * (理科二班,22.556962025316455)
     * (文科三班,22.680851063829788)
     * (理科四班,22.63736263736264)
     * (理科一班,22.333333333333332)
     * (文科五班,22.30952380952381)
     */
    // val map: Map[String, List[Score]] = scoreList.groupBy((s: Score) => s.id)
    val groupRDD: RDD[(String, Iterable[(String, Int)])] = clazzWithAgeRDD.groupBy(_._1)
//    groupRDD.foreach(println)

    val resKvRDD: RDD[(String, Double)] = groupRDD.map((kv: (String, Iterable[(String, Int)])) => {
      val clazz: String = kv._1
      val avgAge: Double = kv._2.map(_._2).sum.toDouble / kv._2.size

      (clazz, avgAge)
    })
    resKvRDD.foreach(println)

//    while (true){
//
//    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

Lisää kuvan kuvaus tähän

6) groupByKey
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Demo6GroupByKey {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("groupByKey")

    val sc: SparkContext = new SparkContext(conf)

    //===================================================
    val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
    //求每个班级的平均年龄
    val arrayRDD: RDD[Array[String]] = linesRDD.map((line: String) => line.split(","))


    //像这种RDD中的元素是(key,value)类型的,我们将这种RDD称之为键值对RDD(kv格式RDD)
    val clazzWithAgeRDD: RDD[(String, Int)] = arrayRDD.map {
      case Array(_, _, age: String, _, clazz: String) =>
        (clazz, age.toInt)
    }

    /**
     * GroupByKey属于kv格式的算子,只能作用在kv格式的RDD上
     * 也就说,只有kv格式的RDD才能调用kv格式的算子
     * 输出:
     * (理科二班,22.556962025316455)
     * (文科三班,22.680851063829788)
     * (理科四班,22.63736263736264)
     * (理科一班,22.333333333333332)
     * (文科五班,22.30952380952381)
     */
    val groupByKeyRDD: RDD[(String, Iterable[Int])] = clazzWithAgeRDD.groupByKey()

    val resKvRDD2: RDD[(String, Double)] = groupByKeyRDD.map((kv: (String, Iterable[Int])) => (kv._1, kv._2.sum.toDouble / kv._2.size))
    resKvRDD2.foreach(println)

    /**
     * 面试题:spark core中 groupBy算子与groupByKey算子的区别?
     * 1、代码格式上:
     * groupBy的分组条件可以自己指定,并且绝大部分的RDD都可以调用该算子,返回的是键和元素本身组成的迭代器构成的kv格式RDD
     * groupByKey算子,只能由kv格式的RDD进行调用,分组的条件会自动根据键进行分组,不需要在自己指定,返回的是键和值组成的迭代器构成的kv格式RDD
     *
     * 2、执行shuffle数据量来看
     *  groupBy产生的shuffle数据量在一定程度上要大于groupByKey产生的shuffle数据量
     *  所以groupByKey算子的执行效率要比groupBy算子的执行效率要高
     */

    while (true) {

    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

Lisää kuvan kuvaus tähän

7) ReduceByKey
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Demo7ReduceByKey {
  def main(args: Array[String]): Unit = {

    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("reduceByKey")

    val sc: SparkContext = new SparkContext(conf)

    //===================================================
    val linesRDD: RDD[String] = sc.textFile("spark/data/score.txt")
    //求每个班级的平均年龄
    val arrayRDD: RDD[Array[String]] = linesRDD.map((line: String) => line.split(","))
    //分别使用groupByKey和reduceBykey计算每个学生的总分
    val idWithScoreRDD: RDD[(String, Int)] = arrayRDD.map {
      case Array(id: String, _, score: String) =>
        (id, score.toInt)
    }

    /**
     * groupByKey实现
     */
//        val kvRDD1: RDD[(String, Iterable[Int])] = idWithScoreRDD.groupByKey()
//        val resRDD1: RDD[(String, Int)] = kvRDD1.map((kv: (String, Iterable[Int])) => (kv._1, kv._2.sum))
//        resRDD1.foreach(println)

    /**
     * reduceByKey实现
     * 输出:
     * (1500100113,519)
     * (1500100724,440)
     * (1500100369,376)
     * (1500100378,402)
     * (1500100306,505)
     * (1500100578,397)
     */
    val resRDD2: RDD[(String, Int)] = idWithScoreRDD.reduceByKey((v1: Int, v2: Int) => v1 + v2)
    resRDD2.foreach(println)


    /**
     * 面试题:
     * groupByKey与reduceBykey的区别?
     * 相同点:
     * 它们都是kv格式的算子,只有kv格式的RDD才能调用
     * 不同点:
     * 1)groupByKey只是单纯地根据键进行分组,分组后的逻辑可以在后续的处理中调用其他的算子实现
     * 2)reduceByKey 相当于MR中的预聚合,所以shuffle产生的数据量要比groupByKey中shuffle产生的数据量少,效率高,速度要快一些
     * 3)groupByKey的灵活度要比reduceByKey灵活度要高,reduceBykey无法做一些复杂的操作,比如方差。但是groupByKey可以在分组之后的RDD进行方差操作
     */

    while (true){

    }
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

Lisää kuvan kuvaus tähän

8) liitto
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Demo8Union {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("reduceByKey")

    val sc: SparkContext = new SparkContext(conf)

    //===================================================
    //parallelize:将scala的集合变成spark中的RDD
    val rdd1: RDD[(String, String)] = sc.parallelize(List(
      ("1001", "张三"),
      ("1002", "张三2"),
      ("1003", "张三3"),
      ("1004", "张三4"),
      ("1005", "张三5")
    ))
    println(s"rdd1的分区数:${rdd1.getNumPartitions}")

    val rdd2: RDD[(String, String)] = sc.parallelize(List(
      ("1006", "李四6"),
      ("1007", "李四7"),
      ("1003", "张三3"),
      ("1008", "李四8"),
      ("1009", "李四9")
    ))
    println(s"rdd2的分区数:${rdd2.getNumPartitions}")

    val rdd3: RDD[(String, Int)] = sc.parallelize(List(
      ("1006", 111),
      ("1007", 22),
      ("1003", 33),
      ("1008", 444),
      ("1009", 55)
    ))

    //两个RDD要想进行union合并,必须保证元素的格式和数据类型是一致的
    //分区数也会进行合并,最终的分区数由两个RDD总共的分区数决定
    //    rdd1.union(rdd3)
    val resRDD1: RDD[(String, String)] = rdd1.union(rdd2)
    resRDD1.foreach(println)
    println(s"resRDD1的分区数:${resRDD1.getNumPartitions}")

    /**
     * 输出:
     * rdd1的分区数:1
     * rdd2的分区数:1
     * (1001,张三)
     * (1002,张三2)
     * (1003,张三3)
     * (1004,张三4)
     * (1005,张三5)
     * (1006,李四6)
     * (1007,李四7)
     * (1003,张三3)
     * (1008,李四8)
     * (1009,李四9)
     * resRDD1的分区数:2
     */
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

9) liity

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

/**
 * join算子也要作用在kv格式的RDD上
 */
object Demo9Join {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("reduceByKey")

    val sc: SparkContext = new SparkContext(conf)

    //===================================================
    //parallelize:将scala的集合变成spark中的RDD
    val rdd1: RDD[(String, String)] = sc.parallelize(List(
      ("1001", "张三"),
      ("1002", "李四"),
      ("1003", "王五"),
      ("1004", "小明"),
      ("1005", "小红")
    ))

    val rdd2: RDD[(String, String)] = sc.parallelize(List(
      ("1001", "看美女"),
      ("1002", "看综艺"),
      ("1003", "看八卦"),
      ("1004", "打游戏"),
      ("1009", "学习")
    ))

    /**
     * join 内连接
     * right join 右连接
     * left join 左连接
     * full join 全连接
     */
    // join 内连接 两个rdd共同拥有的键才会进行关联
    /**
     * (1001,张三,看美女)
     * (1002,李四,看综艺)
     * (1004,小明,打游戏)
     * (1003,王五,看八卦)
     */
        val resRDD1: RDD[(String, (String, String))] = rdd1.join(rdd2)
        val resRDD2: RDD[(String, String, String)] = resRDD1.map {
          case (id: String, (name: String, like: String)) =>
            (id, name, like)
        }
        resRDD2.foreach(println)

    //right join 右连接 保证右边rdd键的完整性
    /**
     * (1001,张三,看美女)
     * (1002,李四,看综艺)
     * (1004,小明,打游戏)
     * (1009,查无此人,学习)
     * (1003,王五,看八卦)
     */
        val resRDD2: RDD[(String, (Option[String], String))] = rdd1.rightOuterJoin(rdd2)
        val resRDD3: RDD[(String, String, String)] = resRDD2.map {
          case (id: String, (Some(name), like: String)) =>
            (id, name, like)
          case (id: String, (None, like: String)) =>
            (id, "查无此人", like)
        }
        resRDD3.foreach(println)

    //left join: 左连接
    /**
     * (1005,小红,此人无爱好)
     * (1001,张三,看美女)
     * (1002,李四,看综艺)
     * (1004,小明,打游戏)
     * (1003,王五,看八卦)
     */
    val resRDD1: RDD[(String, (String, Option[String]))] = rdd1.leftOuterJoin(rdd2)
    val resRDD2: RDD[(String, String, String)] = resRDD1.map {
      case (id: String, (name: String, Some(like: String))) =>
        (id, name, like)
      case (id: String, (name: String, None)) =>
        (id, name, "此人无爱好")
    }
    resRDD2.foreach(println)


    //全连接,保证所有的键、值的完整
    /**
     * (1005,小红,此人无爱好)
     * (1001,张三,看美女)
     * (1002,李四,看综艺)
     * (1004,小明,打游戏)
     * (1009,查无此人,学习)
     * (1003,王五,看八卦)
     */
    val resRDD2: RDD[(String, (Option[String], Option[String]))] = rdd1.fullOuterJoin(rdd2)
    val resRDD3: RDD[(String, String, String)] = resRDD2.map {
      case (id: String, (Some(name), Some(like))) =>
        (id, name, like)
      case (id: String, (Some(name), None)) =>
        (id, name, "此人无爱好")
      case (id: String, (None, Some(like))) =>
        (id, "查无此人", like)
    }
    resRDD3.foreach(println)


  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110