2024-07-08
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
# Camp d'été IA # Datawhale # Camp d'été
En plus de la validation croisée sur la baseline d'origine, il existe également une méthode d'optimisation clé, à savoir l'ingénierie des fonctionnalités.
La manière d’optimiser les fonctionnalités est liée à la façon dont nous améliorons la précision de la prédiction du modèle. L'ingénierie des fonctionnalités est souvent une partie que les personnes ayant une compréhension approfondie du domaine problématique peuvent réussir, car nous devons penser à la transformation.
En plus des fonctionnalités de Smiles, de nombreuses fonctionnalités peuvent extraire des informations précieuses. Par exemple, InChI est composé d'une série de parties et fournit des informations détaillées sur la structure moléculaire.Par exempleIdentification de départ, formule moléculaire, table de connexion, nombre d'atomes d'hydrogène, nombre de liaisons multi-rotatives, informations stéréochimiques, informations sur les isomères, informations sur les mélanges ou tautomères, informations sur la multiplicité de charge et de spin, etc.
De plus, si vous souhaitez améliorer la précision du modèle, ce n’est pas une mauvaise idée de changer de modèle.
À partir de la chaîne InChI, nous pouvons voir que la formule moléculaire est donnée directement dans/C47H61N7O6S
partie. Cela signifie que la molécule est composée de 47 atomes de carbone, 61 atomes d’hydrogène, 7 atomes d’azote, 6 atomes d’oxygène et 1 atome de soufre ;
Le poids moléculaire peut être trouvé en multipliant la masse atomique de chaque atome par son nombre, puis en les additionnant.
comme
La masse atomique du carbone (C) est d'environ 12,01 g/mol
La masse atomique de l'hydrogène (H) est d'environ 1,008 g/mol
La masse atomique de l'azote (N) est d'environ 14,01 g/mol
La masse atomique de l'oxygène (O) est d'environ 16,00 g/mol
La masse atomique du soufre (S) est d'environ 32,07 g/mol
Multiplié par les quantités et additionné, nous obtenons le poids moléculaire.
Comptez directement le nombre d'atomes différents et développez-les.
import pandas as pd
import re
atomic_masses = {
'H': 1.008, 'He': 4.002602, 'Li': 6.94, 'Be': 9.0122, 'B': 10.81, 'C': 12.01,
'N': 14.01, 'O': 16.00, 'F': 19.00, 'Ne': 20.180, 'Na': 22.990, 'Mg': 24.305,
'Al': 26.982, 'Si': 28.085, 'P': 30.97, 'S': 32.07, 'Cl': 35.45, 'Ar': 39.95,
'K': 39.10, 'Ca': 40.08, 'Sc': 44.956, 'Ti': 47.867, 'V': 50.942, 'Cr': 52.00,
'Mn': 54.938, 'Fe': 55.845, 'Co': 58.933, 'Ni': 58.69, 'Cu': 63.55, 'Zn': 65.38
}
# 函数用于解析单个InChI字符串
def parse_inchi(row):
inchi_str = row['InChI']
formula = ''
molecular_weight = 0
element_counts = {}
# 提取分子式
formula_match = re.search(r"InChI=1S/([^/] )/c", inchi_str)
if formula_match:
formula = formula_match.group(1)
# 计算分子量和原子计数
for element, count in re.findall(r"([A-Z][a-z]*)([0-9]*)", formula):
count = int(count) if count else 1
element_mass = atomic_masses.get(element.upper(), 0)
molecular_weight = element_mass * count
element_counts[element.upper()] = count
return pd.Series({
'Formula': formula,
'MolecularWeight': molecular_weight,
'ElementCounts': element_counts
})
# 应用函数到DataFrame的每一行
train[['Formula', 'MolecularWeight', 'ElementCounts']] = train.apply(parse_inchi, axis=1)
# 定义存在的key
keys = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn']
# 创建一个空的DataFrame,列名为keys
df_expanded = pd.DataFrame({key: pd.Series() for key in keys})
# 遍历数据,填充DataFrame
for index, item in enumerate(train['ElementCounts'].values):
for key in keys:
# 将字典中的值填充到相应的列中
df_expanded.at[index, key] = item.get(key, 0)
df_expanded = pd.DataFrame(df_expanded)
Comme mentionné la dernière fois, nous utilisons le modèle catboost. Nous n'avons pas essayé lightgbm et xgboost. Vous pouvez exécuter ces trois modèles en séquence, puis faire la moyenne des résultats des trois modèles pour la fusion (c'est également un domaine qui peut être amélioré). ).
def cv_model(clf, train_x, train_y, test_x, clf_name, seed = 2023):
folds = 5
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
oof = np.zeros(train_x.shape[0])
test_predict = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} ************************************'.format(str(i 1)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'min_child_weight': 6,
'num_leaves': 2 ** 6,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.35,
'seed': 2024,
'nthread' : 16,
'verbose' : -1,
}
model = clf.train(params, train_matrix, 2000, valid_sets=[train_matrix, valid_matrix],
categorical_feature=[], verbose_eval=1000, early_stopping_rounds=100)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
if clf_name == "xgb":
xgb_params = {
'booster': 'gbtree',
'objective': 'binary:logistic',
'num_class':3,
'max_depth': 5,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.35,
'tree_method': 'hist',
'seed': 520,
'nthread': 16
}
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
test_matrix = clf.DMatrix(test_x)
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(xgb_params, train_matrix, num_boost_round=2000, evals=watchlist, verbose_eval=1000, early_stopping_rounds=100)
val_pred = model.predict(valid_matrix)
test_pred = model.predict(test_matrix)
if clf_name == "cat":
params = {'learning_rate': 0.35, 'depth': 5, 'bootstrap_type':'Bernoulli','random_seed':2024,
'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False}
model = clf(iterations=2000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
metric_period=1000,
use_best_model=True,
cat_features=[],
verbose=1)
val_pred = model.predict_proba(val_x)
test_pred = model.predict_proba(test_x)
oof[valid_index] = val_pred
test_predict = test_pred / kf.n_splits
F1_score = f1_score(val_y, np.where(val_pred