2024-07-08
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Scikit-discendum (sklearn) popularis apparatus est bibliothecae discendae, quae multa instrumenta ad fodienda et analysin data praebet. Simplex forma fundamentalis in sklearn est, quae introducit quomodo notitias faciendas praeprocessionis, exemplar disciplinae et aestimationis.
Primum fac tibi bibliothecam sklearn inauguratam habere. Potest installed per pituitam:
pip install scikit-learn
Sklearn importans plerumque utitur hoc modo:
import sklearn from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score
sklearn continet aliquas notas constructas-in normali ad faciliorem usum et eruditionem nostram. Exempli gratia iris dataset onerare possumus:
iris = datasets.load_iris() X = iris.data # 特征数据 y = iris.target # 目标数据
Priusquam exemplar instituatur, notitia plerumque praeprocedere debet, ut normaizationis, normalizationis, pluma lectionis, etc.
normalized data:
scaler = StandardScaler() X_scaled = scaler.fit_transform(X)
Dividere notitias positas in disciplina paro et test paro, plerumque utendo train_test_split
officium:
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
Aptum exemplar ad formandum elige, ut machina vectoris sustentans (SVM);
from sklearn.svm import SVC model = SVC(kernel='linear', C=1.0) model.fit(X_train, y_train)
Testimento utendo ad exemplar faciendum perpendere, indicibus uti potes ac accurate:
y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy}')
Utere crucis-saltatione ad optimize exemplar parametri:
from sklearn.model_selection import GridSearchCV parameters = {'kernel': ('linear', 'rbf'), 'C': [1, 10]} svc = SVC() clf = GridSearchCV(svc, parameters) clf.fit(X_train, y_train) print(clf.best_params_)
Hoc simplex doceo ostendit quomodo sklearn utatur ad operas discendi apparatus fundamentales. sklearn opes instrumentorum et algorithmorum praebet quae variis machinae quaestionibus discendi solvendis applicari possunt. Applicatio specifica pendet a notitia tua et in certis functionibus requisitis.