2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Apud PyTorch, exemplar servare et onerare potes, et formare his gradibus sequendo:
Salvum exemplum
Solent duo modi servare exemplar:
Serva totum exemplar (including structuram retialem, pondera, etc.);
torch.save(model, 'model.pth')
Solus status_dict exemplaris (tantum pondus parametri continens) salvatur. Haec methodus commendatur quia spatium repositionis servat et flexibilior est cum oneratione:
torch.save(model.state_dict(), 'model_weights.pth')
exemplar onus
Correspondentes dupliciter potest onerare exemplar;
Si totum exemplar servasti prius, hoc modo directe onerare potes:
model = torch.load('model.pth')
Si modo state_dict prius servata est, exemplar necesse est instantia eadem structura qua exemplar originale, et deinde transire.load_state_dict()
Modum onerare ponderibus;
- # 实例化一个与原模型结构相同的模型
- model = YourModelClass()
-
- # 加载保存的state_dict
- model.load_state_dict(torch.load('model_weights.pth'))
-
- # 确保将模型转移到正确的设备上(例如GPU或CPU)
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- model.to(device)
continue disciplina
Exemplar levato, exercere pergere potes. Fac deminutionem munus et optimizer et statuas eorum recte oneratas (si antea servaveris).Deinde, modo sequere processum consuetum disciplinae
- # 定义损失函数和优化器
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
-
- # 如果之前保存了优化器状态,也可以加载
- optimizer.load_state_dict(torch.load('optimizer.pth'))
-
- # 开始训练
- for epoch in range(num_epochs):
- for inputs, labels in dataloader:
- inputs, labels = inputs.to(device), labels.to(device)
-
- optimizer.zero_grad()
- outputs = model(inputs)
- loss = criterion(outputs, labels)
- loss.backward()
- optimizer.step()
Hoc modo exemplar instituere potes unde tandem illud servasti.