2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
C# CvDnn परिभ्रमणं कार्यान्वितुं CoupledTPS परिनियोजयतिचित्रशुद्धिकरणम्
सामग्रीसूची
TPAMI2024 - घूर्णनसुधारार्थं तथा ततः परं अर्धनिरीक्षितयुग्मितपतली-प्लेटस्प्लाइनमाडलम्
गिथुबपत्रसङ्केतः:https://github.com/nie-lang/युग्मितटीपीएस
संहिता कार्यान्वयनसन्दर्भः : १.https://github.com/hpc203/युग्मितटीपीएस-opencv-dnn
विशेषता_निष्कर्षक.onnx
आदर्श गुण
-------------------------
---------------------------------------------------------------
निवेशाः
-------------------------
नाम:निवेशः
टेन्सर:प्लव[१, ३, ३८४, ५१२] ।
---------------------------------------------------------------
आउटपुट्
-------------------------
नाम:विशेषता
tensor:प्लव[१, २५६, २४, ३२] ।
---------------------------------------------------------------
regressnet.onnx
आदर्श गुण
-------------------------
---------------------------------------------------------------
निवेशाः
-------------------------
नाम:विशेषता
tensor:प्लव[१, २५६, २४, ३२] ।
---------------------------------------------------------------
आउटपुट्
-------------------------
नाम:मेष_गति
tensor:प्लवम्[१, ७, ९, २] ।
---------------------------------------------------------------
रूप1.cs
OpenCvSharp इत्यस्य उपयोगेन;
System इत्यस्य उपयोगेन;
System.Drawing इत्यस्य उपयोगेन;
System.Drawing.Imaging इत्यस्य उपयोगेन;
System.Windows.Forms इत्यस्य उपयोगेन;
नामस्थान Onnx_Demo
{
public partial class Form1 : रूप
{
public Form1() 1.1.
{
घटक आरंभ ();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
स्ट्रिंग इमेज_पथ = "";
DateTime dt1 = तिथिसमय.अधुना;
DateTime dt2 = तिथिसमय.अधुना;
चटप्रतिमा;
युग्मितTPS_RotationNet घूर्णनजाल;
int इटर_संख्या = 3;
private void button1_Click (वस्तु प्रेषक, EventArgs ई)
{
OpenFileDialog ofd = new ओपनफाइलसंवाद ();
ofd.InitialDirectory =अनुप्रयोग.प्रारंभमार्ग+"\test_img\";
ofd.Filter = सञ्चिकाफ़िल्टर;
if (ofd.ShowDialog () != संवादपरिणाम.ठीक) return;
pictureBox1.Image = शून्य;
चित्र_मार्ग = ofd.FileName;
pictureBox1.Image = नया बिटमैप (छवि_मार्ग);
textBox1.Text = "";
छवि = नया मैट (छवि_मार्ग);
pictureBox2.Image = शून्य;
}
private void button2_Click (वस्तु प्रेषक, EventArgs ई)
{
यदि (प्रतिबिम्ब_मार्ग == "")
{
निर्वतनम्;
}
button2.Enabled = मिथ्या;
pictureBox2.Image = शून्य;
textBox1.Text = "";
अनुप्रयोग.DoEvents ();
//चित्रं पठन्तु
छवि = नया मैट (छवि_मार्ग);
dt1 = तिथिसमय।अधुना;
मैट परिणाम_छवि = rotationNet.detect (छवि, iter_num);
dt2 = तिथिसमय।अधुना;
Cv2.CvtColor (परिणाम_छवि, परिणाम_छवि, ColorConversionCodes.BGR2RGB);
pictureBox2.Image = नया बिटमैप (परिणाम_छवि.ToMemoryStream ());
textBox1.Text = "अनुमान समय उपभोग:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = सत्यम्;
}
private void Form1_Load (वस्तु प्रेषक, EventArgs ई)
{
rotationNet = new CoupledTPS_RotationNet ("मॉडल / फीचर_निष्कर्षक.onnx", "मॉडल / regressnet.onnx");
image_path = "परीक्षण_प्रतिबिम्ब/00150_-8.4.jpg";
pictureBox1.Image = नया बिटमैप (छवि_मार्ग);
छवि = नया मैट (छवि_मार्ग);
}
private void pictureBox1_DoubleClick (वस्तु प्रेषक, EventArgs ई)
{
Common.ShowNormalImg (चित्रबॉक्स1.छवि);
}
private void pictureBox2_DoubleClick (वस्तु प्रेषक, EventArgs ई)
{
Common.ShowNormalImg (चित्रबॉक्स2.छवि);
}
SaveFileDialog sdf = new सञ्चिकासंवाद सहेजें ();
private void button3_Click (वस्तु प्रेषक, EventArgs ई)
{
if (pictureBox2.Image == शून्य)
{
निर्वतनम्;
}
बिटमैप आउटपुट = नया बिटमैप (pictureBox2.Image);
sdf.Title = "बचतु";
sdf.Filter = "प्रतिमा (*.jpg)|*.jpg|प्रतिमा (*.png)|*.png|प्रतिमा (*.bmp)|*.bmp|प्रतिमा (*.emf)|*.emf|प्रतिमा।" (*.exif)|*.exif|प्रतिमा (*.gif)|*.gif|प्रतिमा (*.ico)|*.ico|प्रतिमा (*.tiff)|*.tiff|प्रतिमा (*.wmf)| *.wmf";
if (sdf.ShowDialog () == संवादपरिणाम.ठीक)
{
स्विच (sdf.FilterIndex) 1.1.
{
प्रकरणम् १: १.
{
output.Save (sdf.FileName, छविस्वरूप.Jpeg);
भङ्गः;
}
प्रकरणम् २: १.
{
output.Save (sdf.FileName, छविस्वरूप.Png);
भङ्गः;
}
प्रकरणम् ३: १.
{
output.Save (sdf.FileName, छविस्वरूप.Bmp);
भङ्गः;
}
प्रकरणम् ४: १.
{
output.Save (sdf.FileName, छविस्वरूप.Emf);
भङ्गः;
}
प्रकरणम् ५: १.
{
output.Save (sdf.FileName, चित्रस्वरूप.Exif);
भङ्गः;
}
प्रकरणम् ६: १.
{
output.Save (sdf.FileName, चित्रस्वरूप.Gif);
भङ्गः;
}
प्रकरणम् ७: १.
{
output.Save (sdf.FileName, चित्रस्वरूप.चिह्न);
भङ्गः;
}
प्रकरणम् ८: १.
{
output.Save (sdf.FileName, छविस्वरूप.Tiff);
भङ्गः;
}
प्रकरणम् ९: १.
{
output.Save (sdf.FileName, छविस्वरूप.Wmf);
भङ्गः;
}
}
MessageBox.Show("सफलतया रक्षतु, स्थानम्: " + sdf.FileName);
}
}
}
}
- using OpenCvSharp;
- using System;
- using System.Drawing;
- using System.Drawing.Imaging;
- using System.Windows.Forms;
-
- namespace Onnx_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- Mat image;
-
- CoupledTPS_RotationNet rotationNet;
- int iter_num = 3;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.InitialDirectory =Application.StartupPath+"\test_img\";
- ofd.Filter = fileFilter;
-
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
- button2.Enabled = false;
- pictureBox2.Image = null;
- textBox1.Text = "";
- Application.DoEvents();
- //读图片
- image = new Mat(image_path);
- dt1 = DateTime.Now;
- Mat result_image = rotationNet.detect(image, iter_num);
- dt2 = DateTime.Now;
- Cv2.CvtColor(result_image, result_image, ColorConversionCodes.BGR2RGB);
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
- button2.Enabled = true;
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- rotationNet = new CoupledTPS_RotationNet("model/feature_extractor.onnx", "model/regressnet.onnx");
- image_path = "test_img/00150_-8.4.jpg";
- pictureBox1.Image = new Bitmap(image_path);
- image = new Mat(image_path);
- }
-
- private void pictureBox1_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox1.Image);
- }
-
- private void pictureBox2_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox2.Image);
- }
-
- SaveFileDialog sdf = new SaveFileDialog();
- private void button3_Click(object sender, EventArgs e)
- {
- if (pictureBox2.Image == null)
- {
- return;
- }
- Bitmap output = new Bitmap(pictureBox2.Image);
- sdf.Title = "保存";
- sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
- if (sdf.ShowDialog() == DialogResult.OK)
- {
- switch (sdf.FilterIndex)
- {
- case 1:
- {
- output.Save(sdf.FileName, ImageFormat.Jpeg);
- break;
- }
- case 2:
- {
- output.Save(sdf.FileName, ImageFormat.Png);
- break;
- }
- case 3:
- {
- output.Save(sdf.FileName, ImageFormat.Bmp);
- break;
- }
- case 4:
- {
- output.Save(sdf.FileName, ImageFormat.Emf);
- break;
- }
- case 5:
- {
- output.Save(sdf.FileName, ImageFormat.Exif);
- break;
- }
- case 6:
- {
- output.Save(sdf.FileName, ImageFormat.Gif);
- break;
- }
- case 7:
- {
- output.Save(sdf.FileName, ImageFormat.Icon);
- break;
- }
-
- case 8:
- {
- output.Save(sdf.FileName, ImageFormat.Tiff);
- break;
- }
- case 9:
- {
- output.Save(sdf.FileName, ImageFormat.Wmf);
- break;
- }
- }
- MessageBox.Show("保存成功,位置:" + sdf.FileName);
- }
- }
- }
- }
युग्मितTPS_RotationNet.cs
- using OpenCvSharp;
- using OpenCvSharp.Dnn;
- using System.Collections.Generic;
- using System.Linq;
-
- namespace Onnx_Demo
- {
- public class CoupledTPS_RotationNet
- {
-
- int input_height = 384;
- int input_width = 512;
- int grid_h = 6;
- int grid_w = 8;
- Mat grid = new Mat();
- Mat W_inv = new Mat();
-
- Net feature_extractor;
- Net regressNet;
-
- public CoupledTPS_RotationNet(string modelpatha, string modelpathb)
- {
- feature_extractor = CvDnn.ReadNet(modelpatha);
- regressNet = CvDnn.ReadNet(modelpathb);
- tps2flow.get_norm_rigid_mesh_inv_grid(ref grid, ref W_inv, input_height, input_width, grid_h, grid_w);
- }
-
- unsafe public Mat detect(Mat srcimg, int iter_num)
- {
- Mat img = new Mat();
- Cv2.Resize(srcimg, img, new Size(input_width, input_height));
- img.ConvertTo(img, MatType.CV_32FC3, 1.0 / 127.5d, -1.0d);
-
- Mat input_tensor = CvDnn.BlobFromImage(img);
-
- feature_extractor.SetInput(input_tensor);
-
- Mat[] feature_oris = new Mat[1] { new Mat() };
- string[] outBlobNames = feature_extractor.GetUnconnectedOutLayersNames().ToArray();
- feature_extractor.Forward(feature_oris, outBlobNames);
- Mat feature = feature_oris[0].Clone();
-
- int[] shape = { 1, 2, input_height, input_width };
- Mat flow = Mat.Zeros(MatType.CV_32FC1, shape);
-
- List<Mat> flow_list = new List<Mat>();
- for (int i = 0; i < iter_num; i++)
- {
- regressNet.SetInput(feature);
- Mat[] mesh_motions = new Mat[1] { new Mat() };
- regressNet.Forward(mesh_motions, regressNet.GetUnconnectedOutLayersNames().ToArray());
-
- float* offset = (float*)mesh_motions[0].Data;
-
- Mat tp = new Mat();
-
- tps2flow.get_ori_rigid_mesh_tp(ref tp, offset, input_height, input_width, grid_h, grid_w);
-
- Mat T = W_inv * tp; //_solve_system
- T = T.T(); //舍弃batchsize
-
- Mat T_g = T * grid;
-
- Mat delta_flow = new Mat();
-
- tps2flow._transform(T_g, grid, input_height, input_width, ref delta_flow);
-
- if (i == 0)
- {
- flow += delta_flow;
-
- }
- else
- {
- Mat warped_flow = new Mat();
- grid_sample.warp_with_flow(flow, delta_flow, ref warped_flow);
-
- flow = delta_flow + warped_flow;
- }
- flow_list.Add(flow.Clone());
-
- if (i < (iter_num - 1))
- {
- int fea_h = feature.Size(2);
- int fea_w = feature.Size(3);
- float scale_h = (float)fea_h / flow.Size(2);
- float scale_w = (float)fea_w / flow.Size(3);
-
- Mat down_flow = new Mat();
- upsample.UpSamplingBilinear(flow, ref down_flow, fea_h, fea_w, true, scale_h, scale_w);
-
- for (int h = 0; h < fea_h; h++)
- {
- for (int w = 0; w < fea_w; w++)
- {
- float* p_w = (float*)down_flow.Ptr(0, 0, h);
- float temp_w = p_w[w];
- temp_w = temp_w * scale_w;
- p_w[w] = temp_w;
-
- float* p_h = (float*)down_flow.Ptr(0, 1, h);
- float temp_h = p_h[w];
- temp_h = temp_h * scale_h;
- p_h[w] = temp_h;
-
- }
- }
- feature.Release();
- feature = new Mat();
- grid_sample.warp_with_flow(feature_oris[0], down_flow, ref feature);
- }
- }
- Mat correction_final = new Mat();
-
- grid_sample.warp_with_flow(input_tensor, flow_list[iter_num - 1], ref correction_final);
-
- Mat correction_img = grid_sample.convert4dtoimage(correction_final);
-
- return correction_img;
-
- }
- }
- }