Technology Sharing

Compliance testing of the Riscv architecture

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

Why focus on riscv-arch-test directly? Because the RISCOF test framework uses riscv-arch-test
insert image description here

1. The architectural test

An architectural test is a single test that represents the smallest test code that can be compiled and run. It is written in assembly code and its product is a test signature. An architectural test may consist of multiple test cases.

2. The RISC-V architectural test pool

The RISC-V architecture test pool consists of all approved architecture tests that can be compiled by the test framework to form an architecture test suite. The RISC-V architecture test library must be test target agnostic (thus, it should run correctly on any compliant target). Note that this non-functional testing is not a substitute for verification or device testing.

2.1 Test pool structure

architectural-tests-suite (root)
|-- <architecture>_<mode>/<feature(s)>, where
<architecture> is [ RV32I | RV64I | RV32E ]
<mode> is [ M | MU | MS | MSU ], where
   M   Machine      mode tests - tests execute in M-mode only
   MU  Machine/User mode tests - tests execute in both M- & U-modes (S-mode may exist)
   MS  Machine/Supv mode tests - tests execute in both M- & S-modes (not U-mode)
   MSU All          mode tests - tests execute in all of M-, S-, & U-Modes
<feature(s)> are the lettered extension [A | B | C | M ...] or subextension [Zifencei | Zam | ...] when the tests involve extensions, or more general names when tests cut across extension definitionss (e.g. Priv, Interrupt, Vm). The feature string consists of an initial capital letter, followed by any further letters in lower case.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Machine Mode Processor Instruction Set Characteristics Register (MISA)
misa = 0x800000000094112f
Binary representation: 10000000000000000000000000000000000000000100101000001000100101111
insert image description here

riscv-arch-test/riscv-test-suite$ ls
env/ Makefile.include README.md rv32e_m/ rv32i_m/ rv64i_m/
riscv-arch-test/riscv-test-suite/rv64i_m$ ls
A/ B/ C/ CMO/ D/ F/ I/ K/ M/ privilege/ P_unratified/ Zfh/ Zfinx/ Zicond/ Zifencei/

3. The RISC-V architectural test suite

The RISC-V architecture test suite is a set of tests selected from the architecture test pool to test the conformance of a specific RISC-V configuration. Test results are obtained in the form of a test suite signature. The selection of tests is based on the asserted configuration, specification, execution environment, or platform requirements of the target. A compliant processor or processor model should show the same as the golden reference test suite signature for the specific configuration being tested.

4. The test case

Test cases are part of architecture testing and test only one functionality of the specification.
Note: A test can contain multiple test cases, each with its own test inclusion condition (defined by the cond_str parameter of the RVTEST_CASE macro).

4.1 Test Naming

<test objective>-<test number>.S
  • 1

riscv-arch-test/riscv-test-suite/rv64i_m/I/src$ ls
add-01.S and-01.S bge-01.S bne-01.S lb-align-01.S lhu-align-01.S misalign1-jalr-01.S sd-align-01.S slliw-01.S sltiu-01.S sraiw-01.S srliw-01.S sw-align-01.S
addi-01.S andi-01.S bgeu-01.S fence-01.S lbu-align-01.S lui-01.S or-01.S sh-align-01.S sllw-01.S sltu-01.S sraw-01.S srlw-01.S xor-01.S
addiw-01.S auipc-01.S blt-01.S jal-01.S ld-align-01.S lw-align-01.S ori-01.S sll-01.S slt-01.S sra-01.S srl-01.S sub-01.S xori-01.S
addw-01.S beq-01.S bltu-01.S jalr-01.S lh-align-01.S lwu-align-01.S sb-align-01.S slli-01.S slti-01.S srai-01.S srli-01.S subw-01.S

5. Assembly Test Infrastructure (Take ./rv32i_m/I/src/add-01.S as an example)

//
// This assembly file tests the add instruction of the RISC-V I extension for the add covergroup.
// 
#include "model_test.h"
#include "arch_test.h"
RVTEST_ISA("RV32I")

.section .text.init
.globl rvtest_entry_point
rvtest_entry_point:
RVMODEL_BOOT
RVTEST_CODE_BEGIN

#ifdef TEST_CASE_1

RVTEST_CASE(0,"//check ISA:=regex(.*32.*);check ISA:=regex(.*I.*);def TEST_CASE_1=True;",add)

RVTEST_SIGBASE( x3,signature_x3_1)

inst_0:
// rs2 == rd != rs1, rs1==x4, rs2==x24, rd==x24, rs1_val > 0 and rs2_val > 0, rs2_val == 1, rs1_val == (2**(xlen-1)-1), rs1_val != rs2_val, rs1_val == 2147483647
// opcode: add ; op1:x4; op2:x24; dest:x24; op1val:0x7fffffff;  op2val:0x1
TEST_RR_OP(add, x24, x4, x24, 0x80000000, 0x7fffffff, 0x1, x3, 0, x18)

inst_1:
// rs1 == rs2 != rd, rs1==x10, rs2==x10, rd==x28, rs1_val > 0 and rs2_val < 0, rs2_val == -257, rs1_val == 131072
// opcode: add ; op1:x10; op2:x10; dest:x28; op1val:0x20000;  op2val:0x20000
TEST_RR_OP(add, x28, x10, x10, 0x40000, 0x20000, 0x20000, x3, 4, x18)

inst_2:
// rs1 == rs2 == rd, rs1==x21, rs2==x21, rd==x21, rs1_val < 0 and rs2_val < 0, rs1_val == -16777217
// opcode: add ; op1:x21; op2:x21; dest:x21; op1val:-0x1000001;  op2val:-0x1000001
TEST_RR_OP(add, x21, x21, x21, 0xfdfffffe, -0x1000001, -0x1000001, x3, 8, x18)
......
......
......
RVTEST_CODE_END
RVMODEL_HALT

RVTEST_DATA_BEGIN
.align 4

rvtest_data:
.word 0xbabecafe
.word 0xbabecafe
.word 0xbabecafe
.word 0xbabecafe
RVTEST_DATA_END

RVMODEL_DATA_BEGIN
rvtest_sig_begin:
sig_begin_canary:
CANARY;

signature_x3_0:
    .fill 0*(XLEN/32),4,0xdeadbeef

signature_x3_1:
    .fill 17*(XLEN/32),4,0xdeadbeef

signature_x8_0:
    .fill 16*(XLEN/32),4,0xdeadbeef

signature_x1_0:
    .fill 512*(XLEN/32),4,0xdeadbeef

signature_x1_1:
    .fill 43*(XLEN/32),4,0xdeadbeef

#ifdef rvtest_mtrap_routine

tsig_begin_canary:
CANARY;
mtrap_sigptr:
    .fill 64*(XLEN/32),4,0xdeadbeef
tsig_end_canary:
CANARY;

#endif

#ifdef rvtest_gpr_save

gpr_save:
    .fill 32*(XLEN/32),4,0xdeadbeef

#endif

sig_end_canary:
CANARY;
rvtest_sig_end:
RVMODEL_DATA_END
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91

A brief explanation of the above assembly code is as follows:

  1. Header to inlcude comments

#This assembly file tests the add instruction of the RISC-V I extension for the add covergroup.

  1. Includes header files

#include “model_test.h”
#include “arch_test.h”

Each test should only include the following header files:
model_test.h - defines target-specific macros, including required macros and optional macros: (such as RVMODEL_xxx)
arch_test.h - defines predefined test macros, including required macros and optional macros: (such as RVTEST_xxx)

  1. Set the TVM of the test

RVTEST_ISA(“RV32I”)

  1. Test target specific boot-code

RVMODEL_BOOT

  1. Start of GPR initialization routine and test code

RVTEST_CODE_BEGIN

  1. Define the RVTEST_CASE string and conditions

#ifdef TEST_CASE_1
// this test is meant for devices implementing rv32I extension and requires enabling the compile
// macro TEST_CASE_1. This test will contribute to the “add” coverage label.
RVTEST_CASE(0,“//check ISA:=regex(.32.);check ISA:=regex(.I.);def TEST_CASE_1=True;”,add)

  1. Initialize pointer to the signature region

RVTEST_SIGBASE( x16,signature_x16_1) // x16 will point to signature_x16_1 label in the signature region

  1. Define the test cases
inst_0:
// rs2 == rd != rs1, rs1==x4, rs2==x24, rd==x24, rs1_val > 0 and rs2_val > 0, rs2_val == 1, rs1_val == (2**(xlen-1)-1), rs1_val != rs2_val, rs1_val == 2147483647
// opcode: add ; op1:x4; op2:x24; dest:x24; op1val:0x7fffffff;  op2val:0x1
TEST_RR_OP(add, x24, x4, x24, 0x80000000, 0x7fffffff, 0x1, x3, 0, x18)

inst_1:
// rs1 == rs2 != rd, rs1==x10, rs2==x10, rd==x28, rs1_val > 0 and rs2_val < 0, rs2_val == -257, rs1_val == 131072
// opcode: add ; op1:x10; op2:x10; dest:x28; op1val:0x20000;  op2val:0x20000
TEST_RR_OP(add, x28, x10, x10, 0x40000, 0x20000, 0x20000, x3, 4, x18)
...
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
//Tests for a instructions with register-register operand
#define TEST_RR_OP(inst, destreg, reg1, reg2, correctval, val1, val2, swreg, offset, testreg) 
    TEST_CASE(testreg, destreg, correctval, swreg, offset, 
      LI(reg1, MASK_XLEN(val1))                        ;
      LI(reg2, MASK_XLEN(val2))                        ;
      inst destreg, reg1, reg2                        ;
    )
#define TEST_CASE(testreg, destreg, correctval, swreg, offset, code... )        ;
    code                                ;
    RVTEST_SIGUPD(swreg,destreg,offset)        ;
    RVMODEL_IO_ASSERT_GPR_EQ(testreg, destreg, correctval)

 /* automatically adjust base and offset if offset gets too big, resetting offset                                 */
 /* RVTEST_SIGUPD(basereg, sigreg)          stores sigreg at offset(basereg) and updates offset by regwidth         */
 /* RVTEST_SIGUPD(basereg, sigreg,newoff) stores sigreg at newoff(basereg) and updates offset to regwidth+newoff */
#define RVTEST_SIGUPD(_BR,_R,...)                        ;
  .if NARG(__VA_ARGS__) == 1                                ;
        .set offset,_ARG1(__VA_OPT__(__VA_ARGS__,0))        ;
  .endif                                                ;
  CHK_OFFSET(_BR, REGWIDTH,0)                                ;
  SREG _R,offset(_BR)                                        ;
  .set offset,offset+REGWIDTH
  
  RVMODEL_IO_ASSERT_GPR_EQ 定义在target的model_test.h中```

在咱们得model_test.h中将RVMODEL_IO_ASSERT_GPR_EQ 宏定义如下:比较错误的话,往0xF00000801

```c
#define RVMODEL_IO_ASSERT_GPR_EQ(_S, _R, _I)  
    li _S, 0xF0000080;         
    mv t0, _R;                 
    li t3, _I;                 
    beq t0, t3, 1f;            
    li t2, 1;                  
    sw t2, 0(_S);              
    j 2f;                      
1:                             
    li t2, 0;                  
    sw t2, 0(_S);              
2:                             
    nop;```

在tb.v中加入监测对AXI 写地址总线,地址0xF0000080的监测,如果出现fail_cnt >0,可以判断该testcase错误

```c
// RVMODEL_IO_ASSERT_GPR_EQ(testreg, destreg, correctval) used to check destreg == correctval
// destreg != correctva write testreg 1, else write testreg 0
always @(posedge `CPU_CLK) begin
    if ((cpu_awaddr[31:0] == 32'hF000_0080) && cpu_wvalid && `clk_en && (cpu_wstrb[15:0] == 16'hf)) begin
       if(`SOC_TOP.biu_pad_wdata == 1'b1) begin
         fail_cnt ++;
       end
    end
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  1. Change signature base register
// this will change the signature base register to x3. x3 will not point to signature_x3_0 in
// the signature region
RVTEST_SIGBASE( x3,signature_x3_0)

// continue with new test cases ..
TEST_RR_OP(add, x4, x24, x27, 0x55555955, 0x00000400, 0x55555555, x3, 0, x5)
...
...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  1. End the test and halt the test-target
RVTEST_CODE_END
RVMODEL_HALT
  • 1
  • 2
  1. Create test input data section
RVTEST_DATA_BEGIN
rvtest_data:
.word 0xbabecafe
RVTEST_DATA_END
  • 1
  • 2
  • 3
  • 4
  1. Create pre-loaded signature region
RVMODEL_DATA_BEGIN
rvtest_sig_begin:
sig_begin_canary:
CANARY;

signature_x3_0:
    .fill 0*(XLEN/32),4,0xdeadbeef

signature_x3_1:
    .fill 17*(XLEN/32),4,0xdeadbeef

signature_x8_0:
    .fill 16*(XLEN/32),4,0xdeadbeef

signature_x1_0:
    .fill 512*(XLEN/32),4,0xdeadbeef

signature_x1_1:
    .fill 43*(XLEN/32),4,0xdeadbeef

#ifdef rvtest_mtrap_routine

tsig_begin_canary:
CANARY;
mtrap_sigptr:
    .fill 64*(XLEN/32),4,0xdeadbeef
tsig_end_canary:
CANARY;

#endif

#ifdef rvtest_gpr_save

gpr_save:
    .fill 32*(XLEN/32),4,0xdeadbeef

#endif

sig_end_canary:
CANARY;
rvtest_sig_end:
RVMODEL_DATA_END
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

6. The test case signature

The test case signature is represented by a single or multiple values. The values ​​will be written to memory starting at the address specified by RVMODEL_DATA_BEGIN and ending at the address specified by RVMODEL_DATA_END. The signature is easily generated using the RVTEST_SIGUPD macro.

7. The test signature

A test signature is a characteristic value generated by an architectural test run. A test signature may consist of multiple test case signatures, prefixed by a single line containing the name of the test and a unique value representing its version. The test target is responsible for extracting the values ​​from memory and formatting them appropriately, using metadata provided by the framework, using the RVMODEL_DATA_BEGIN and RVMODEL_DATA_END macros. Test case signature values ​​are written in lines, starting with the most significant byte on the left, in the format<hex_value> , where the length of the value will be 32 bits (hence 8 characters), while the actual test calculation value length is not taken into account. The file should be stored starting with the value at the lowest address of the signature (i.e. from RVMODEL_DATA_BEGIN to RVMODEL_DATA_END). In addition, the signature should always start on a 16-byte (128-bit) boundary, and the size of the signature should be a multiple of 4 bytes (i.e. it should also end on a 4-byte boundary).

8. The test suite signature

A test suite signature is defined as a set of test signatures that are valid for a given architectural test suite. It represents the test signature of the architectural test suite for a particular RISC-V configuration selected.

9. RISCOF Testing Framework

RISCOF - The RISC-V Compatibility Framework is a Python-based framework that enables testing the compatibility of RISC-V targets (hardware or software implementations) with the standard RISC-V Golden Reference Model using a suite of RISC-V architectural tests.
insert image description here
RISC-V Configuration Validator : RISCV-Config
RISC-V Compliance Test Generator : RISC-V CTG
RISC-V ISA Coverage : RISC-V ISAC
In order for RISCOF to run the test properly, the following needs to be provided:

  • config.ini: This file is a basic configuration file that follows the ini syntax. This file will capture information such as: the name of the DUT/reference plugin, the path to the plugin, the path to the YAML file based on riscv-config, etc.
  • dut-plugin directory: RISCOF requires that the DUT model to be tested be provided as a Python plugin. A Python plugin is actually a Python file that contains some standard and defined functions to perform test compilation, execution, and signature extraction activities. The name of this Python file needs to be prefixed with riscof_ and must exist in the dut-plugin directory. You can refer to the Python plugin file section to learn how to write this Python file.
    The directory also needs to contain the isa and platform YAML files based on riscv-config that provide the definition of the DUT. These YAML files will be used to filter the tests that need to be run on the DUT.
    Finally, there needs to be an env directory in the dut-plugin directory, which contains environment files such as model_test.h, which is required to compile and run the tests. Please refer to the TestFormat specification for the definition of macros that can be used in the model_test.h file. The env directory may also contain other files such as linker scripts and post-processing scripts that users may need.
  • reference-plugin directory: Similar to the DUT plugin, RISCOF also requires a reference model plugin. The structure of the directory and files is the same as for the DUT. However, the isa and platform YAML files are not required, as RISCOF will always pick up the YAML files for all purposes from the DUT plugin.
    To simplify the operation, RISCOF generates standard DUT and reference model preset templates for users through setting commands, as shown in the following figure:

$ riscof setup --dutname=spike

The above command will generate the following files and directories in the current directory:

├──config.ini # configuration file for riscof
├──spike/ # DUT plugin templates
├── env
│ ├── link.ld # DUT linker script
│ └── model_test.h # DUT specific header file
├── riscof_spike.py # DUT python plugin
├── spike_isa.yaml # DUT ISA yaml based on riscv-config
└── spike_platform.yaml # DUT Platform yaml based on riscv-config
├──sail_cSim/ # reference plugin templates
├── env
│ ├── link.ld # Reference linker script
│ └── model_test.h # Reference model specific header file
├── init.py
└── riscof_sail_cSim.py # Reference model python plugin.

Just change the above spike to the C920 plugin. Of course, you need to modify various configuration files and python files.
c920_isa.yaml

hart_ids: [0]
hart0:
  ISA: RV64IMAFDCVZicsr_Zicbom_Zicbop_Zicboz_Zihintpause_Zfh_Zca_Zcb_Zcd_Zba_Zbb_Zbc_Zbs
  physical_addr_sz: 40
  User_Spec_Version: "2.2"
  Privilege_Spec_Version: "1.10"
  hw_data_misaligned_support: false
  pmp_granularity: 4
  supported_xlen: [64]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

c920_platform.yaml

mtime:
  implemented: true
  address: 0xBFF8
mtimecmp:
  implemented: true
  address: 0x4000
nmi:
  label: nmi_vector
reset:
  address: 0x000000000 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Execute the following command to extract the case list from test_list.yaml and run each case. You can comment out some of them and only run some of them.

riscof run --config=config.ini
–suite=riscv-arch-test/riscv-test-suite/
–env=riscv-arch-test/riscv-test-suite/env
–testfile=riscof_work/test_list.yaml

Executing the following command will generate test_list.yaml and run regression

riscof run --config=config.ini
–suite=riscv-arch-test/riscv-test-suite/
–env=riscv-arch-test/riscv-test-suite/env

10. Test Results

insert image description here
Error cause analysis:
The first:
insert image description here
Because there was an error when compiling

    INFO | Compiling test: /ssd_fes/jiongz/desktop/github/c920_riscof1/riscv-arch-test/riscv-test-suite/rv64i_m/I/src/beq-01.S
   ERROR | /opt/picocom/ThirdParty_Libs/T-head/C920_R2S0P21/C920_R2S0_manuals_and_tools/manuals_and_tools/08_toolchain_900_series_cpu_toolchain/V2.8.0/Xuantie-900-gcc-elf-newlib-x86_64-V2.8.0/bin/../lib/gcc/riscv64-unknown-elf/10.4.0/../../../../riscv64-unknown-elf/bin/ld: main.elf section `.text' will not fit in region `MEM1'
collect2: error: ld returned 1 exit status
  • 1
  • 2
  • 3

Second type:
insert image description here
The c920 does not enable a certain command by default.
insert image description here

11. rv64i_m/I/src/add-01.S waveform

There is also a macro in model_test.h to dump signature and finish simulation

// This will dump the test results (signature) via the testbench dump module.
#define RVMODEL_HALT                                          
    signature_dump:                                           
      la   a0, begin_signature;                               
      la   a1, end_signature;                                 
      li   a2, 0xF0000040;                                    
    signature_dump_loop:                                      
      bge  a0, a1, signature_dump_end;                        
      lw   t0, 0(a0);                                         
      sw   t0, 0(a2);                                         
      addi a0, a0, 4;                                         
      j    signature_dump_loop;                               
    signature_dump_end:                                       
      nop;                                                    
    terminate_simulation:                                     
      li   a0, 0xF0000000;                                    
      li   a1, 0xCAFECAFE;                                    
      sw   a1, 0(a0);                                         
      j    terminate_simulation
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

Corresponding to tb.v

always @(posedge `CPU_CLK or negedge `CPU_RST) begin
    if (!`CPU_RST) begin
        msi <= 1'b0;
        mei <= 1'b0;
        mti <= 1'b0;
    end else begin
        //if ((wb_cpu.cyc == 1'b1) && (wb_cpu.stb == 1'b1) && (wb_cpu.we == 1'b1) && (cpu_awaddr[31:0] == 32'hF000_0000)) begin
        if ((cpu_awaddr[31:0] == 32'hF000_0000) && cpu_wvalid && `clk_en && (cpu_wstrb[15:0] == 16'hf)) begin
            case (`SOC_TOP.biu_pad_wdata[31:0])
                32'hCAFE_CAFE: begin // end simulation
                    $display("Finishing simulation.");
                    #100;
                    if(fail_cnt >0) begin
                     $error("This case test failed!");
                    end
                    $finish;
                end
                ......
 end

// Signature Dump
int dump_file; // Declare file handle
always @(posedge `CPU_CLK) begin
    if ((cpu_awaddr[31:0] == 32'hF000_0040) && cpu_wvalid && `clk_en && (cpu_wstrb[15:0] == 16'hf)) begin
        if (!dump_file) begin // Check if file is already open
            dump_file = $fopen("DUT-c920.signature", "w"); // Open file if not already opened
        end
        //for (int i = 7; i >= 0; i--) begin
        //    $fwrite(dump_file, "%hn", `SOC_TOP.biu_pad_wdata[i*4 +: 4]); // Write data
        //end
        $fwrite(dump_file, "%hn", `SOC_TOP.biu_pad_wdata[31:0]); // Write data
    end
    else if((cpu_awaddr[31:0] == 32'hF000_0000) && cpu_wvalid && `clk_en && (cpu_wstrb[15:0] == 16'hf)) begin
        if (dump_file) begin // If file is open, close it
            $fclose(dump_file);
            dump_file = 0; // Reset file handle to 0 indicating file is closed
        end
    end
end

// RVMODEL_IO_ASSERT_GPR_EQ(testreg, destreg, correctval) used to check destreg == correctval
// destreg != correctva write testreg 1, else write testreg 0
always @(posedge `CPU_CLK) begin
    if ((cpu_awaddr[31:0] == 32'hF000_0080) && cpu_wvalid && `clk_en && (cpu_wstrb[15:0] == 16'hf)) begin
       if(`SOC_TOP.biu_pad_wdata == 1'b1) begin
         fail_cnt ++;
       end
    end
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
#include "model_test.h"
#include "arch_test.h"
RVTEST_ISA("RV64I")

.section .text.init
.globl rvtest_entry_point
rvtest_entry_point:
RVMODEL_BOOT
RVTEST_CODE_BEGIN

#ifdef TEST_CASE_1

RVTEST_CASE(0,"//check ISA:=regex(.*64.*);check ISA:=regex(.*I.*);def TEST_CASE_1=True;",add)

RVTEST_SIGBASE( x8,signature_x8_1)

inst_0:
// rs1 == rs2 != rd, rs1==x0, rs2==x0, rd==x20, rs1_val > 0 and rs2_val > 0, rs1_val == 4, rs1_val==4 and rs2_val==6148914691236517206, rs1_val != rs2_val
// opcode: add ; op1:x0; op2:x0; dest:x20; op1val:0x0;  op2val:0x0
TEST_RR_OP(add, x20, x0, x0, 0x0, 0x0, 0x0, x8, 0, x16)

inst_1:
// rs2 == rd != rs1, rs1==x2, rs2==x26, rd==x26, rs1_val > 0 and rs2_val < 0, rs2_val == -1073741825
// opcode: add ; op1:x2; op2:x26; dest:x26; op1val:0x5;  op2val:-0x40000001
TEST_RR_OP(add, x26, x2, x26, 0xffffffffc0000004, 0x5, -0x40000001, x8, 8, x16)

inst_2:
// rs1 == rs2 == rd, rs1==x22, rs2==x22, rd==x22, rs1_val < 0 and rs2_val < 0, rs1_val == -8388609
// opcode: add ; op1:x22; op2:x22; dest:x22; op1val:-0x800001;  op2val:-0x800001
TEST_RR_OP(add, x22, x22, x22, 0xfffffffffefffffe, -0x800001, -0x800001, x8, 16, x16)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

The content of "riscof_work/rv64i_m/I/src/add-01.S/dut/DUT-c920.signature" is as follows:

e7d4b281
6f5ca309
00000000
00000000
c0000004
ffffffff
fefffffe
ffffffff
ffffffbf
007fffff
00000080
00000000
66666665
e6666666
00000001
00000000
0001ffff
80000000
10000001
00000000
fffffeff

insert image description here
insert image description here