informasi kontak saya
Suratmesophia@protonmail.com
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Distilasi model merupakan suatu metode untuk mengoptimalkan kinerja model kecil dengan cara mentransfer pengetahuan model besar (model guru) ke model kecil (model siswa). Distilasi biasanya mencakup bentuk-bentuk berikut:
Model siswa dilatih melalui soft label model guru, sehingga model siswa mempelajari distribusi keluaran model guru.
import torch
import torch.nn as nn
# 定义教师模型和学生模型
teacher_model = ...
student_model = ...
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)
# 学生模型预测
student_outputs = student_model(inputs)
loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)
# 反向传播和优化
loss.backward()
optimizer.step()
Belajar dari model guru dengan membiarkan model siswalapisan tengahrepresentasi fitur untuk mengoptimalkan kinerja model siswa.
class FeatureExtractor(nn.Module):
def __init__(self, model):
super(FeatureExtractor, self).__init__()
self.features = nn.Sequential(*list(model.children())[:-1])
def forward(self, x):
return self.features(x)
teacher_feature_extractor = FeatureExtractor(teacher_model)
student_feature_extractor = FeatureExtractor(student_model)
# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
# 定义特征蒸馏损失
feature_distillation_loss = nn.MSELoss()(student_features, teacher_features)
# 反向传播和优化
feature_distillation_loss.backward()
optimizer.step()
Menggabungkan distilasi label lunak dan distilasi fitur, menggunakan distribusi keluaran model guru danRepresentasi fituruntuk melatih model siswa.
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
mse_loss = nn.MSELoss()
# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)
# 学生模型预测
student_outputs = student_model(inputs)
soft_label_loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)
# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
feature_loss = mse_loss(student_features, teacher_features)
# 组合损失
total_loss = soft_label_loss + alpha * feature_loss
# 反向传播和优化
total_loss.backward()
optimizer.step()
Melalui teknologi penyulingan di atas, hal ini dapat dilakukan secara efektifModel optimasistruktur, mengurangi overhead komputasi, dan meningkatkan kecepatan inferensi model dan efisiensi penerapan sambil mempertahankan kinerja model.