моя контактная информация
Почтамезофия@protonmail.com
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Дистилляция моделей — это метод оптимизации производительности небольших моделей путем передачи знаний большой модели (модели учителя) маленькой модели (модели ученика). Дистилляция обычно включает в себя следующие формы:
Модель ученика обучается с помощью мягких меток модели учителя, так что модель ученика изучает выходное распределение модели учителя.
import torch
import torch.nn as nn
# 定义教师模型和学生模型
teacher_model = ...
student_model = ...
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)
# 学生模型预测
student_outputs = student_model(inputs)
loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)
# 反向传播和优化
loss.backward()
optimizer.step()
Учитесь на моделях учителей, позволяя моделям учениковсредний слойпредставление функций для оптимизации производительности модели студента.
class FeatureExtractor(nn.Module):
def __init__(self, model):
super(FeatureExtractor, self).__init__()
self.features = nn.Sequential(*list(model.children())[:-1])
def forward(self, x):
return self.features(x)
teacher_feature_extractor = FeatureExtractor(teacher_model)
student_feature_extractor = FeatureExtractor(student_model)
# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
# 定义特征蒸馏损失
feature_distillation_loss = nn.MSELoss()(student_features, teacher_features)
# 反向传播和优化
feature_distillation_loss.backward()
optimizer.step()
Сочетание дистилляции мягких меток и дистилляции признаков с использованием распределения выходных данных модели учителя иПредставление объектадля обучения модели студента.
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
mse_loss = nn.MSELoss()
# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)
# 学生模型预测
student_outputs = student_model(inputs)
soft_label_loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)
# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
feature_loss = mse_loss(student_features, teacher_features)
# 组合损失
total_loss = soft_label_loss + alpha * feature_loss
# 反向传播和优化
total_loss.backward()
optimizer.step()
Благодаря описанной выше технологии дистилляции можно эффективноМодель оптимизацииструктуру, сократить вычислительные затраты и повысить скорость вывода модели и эффективность развертывания, сохраняя при этом производительность модели.