2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Columna attributum x *j | Numerus attributorum n | x ⃗ vec{x}x**************************(ego)row vector | certum valorem x ji vec{x}_j^ix**************************jegoSursum et deorsum |
---|---|---|---|
medium μ | standardisation | Standard declinatio σ | sigma(σ) |
w vec{w}w************** = [w1 w**2 w**3 …]
x ⃗ vec{x}x************************** = [x1 x**2 x**3 …]
fw ⃗ , b ( x ⃗ ) = w x + b = w 1 x 1 + w 2 x 2 + ... + wnxn + b f_{vec{w},b} (vec{x}) = vec{ w} * vec{x} + b = w_1x_1 + w_2x_2 + ... + w _nx_n + bf****w**************,b(x**************************)=w**************∗x**************************+b=w**************1x**************************1+w**************2x**************************2+…+w**************nx**************************n+b
import numpy
f = np.dot(w, x) + b
Nota: est velocissimum, cum n magnum est (parallel processus)
wn = wn − α 1 m i = 1 mfw ⃗ , b ( x ⃗ ( i ) − y ( i ) ) xn ( i ) w_n = w_n - αdfrac{1}{m} sumlimits_{i=}^mf_ {vec{w},b}(vec{x}^{(i)}-y^{(i)})x_n^{(i)}w**************n=w**************n−αm1ego=1∑mf****w**************,b(x**************************(ego)−y**(ego))x**************************n(ego)
b = b α 1 m i = 1 m ( fw , b ( x ⃗ ( i ) − y ( i ) ) b = b - α{dfrac{1}{m}} summae_{i=}^ m(f_{vec{w},b}(vec{x}^{(i)}-y^{(i)})b=b−αm1ego=1∑m(f****w**************,b(x**************************(ego)−y**(ego))
Pondera variabilibus independentibus respondentia in ampliori ambitu minora esse tendunt, et pondera independens variabilium correspondentia in minore ambitu maiora tendunt.
Divide per maximum valorem range ut pondus versus [0, 1] variabilis independens
Abscissa: x 1 = x 1 − μ 1 2000 − 300 x_1 = dfrac{x_1-μ_1}{2000-300}x**************************1=2000−300x**************************1−μ1 Y-axis: x 2 = x 2 − μ 2 5 − 0 x_2 = dfrac{x_2 - μ_2}{5-0}x**************************2=5−0x**************************2−μ2
0.18 ≤ x 1 ≤ 0.82 -0.18le x_1le0.82−0.18≤x**************************1≤0.82 0.46 ≤ x 2 ≤ 0.54 -0.46le x_2le0.54−0.46≤x**************************2≤0.54
300 ≤ x 1 ≤ 2000 300le x_1le2000300≤x**************************1≤2000 0 ≤ x 2 ≤ 5 0le x_2le50≤x**************************2≤5
x 1 = x 1 − μ 1 σ 1 x1 = dfrac{x_1-μ_1}{σ_1}x**************************1=σ1x**************************1−μ1 0.67 ≤ x 1 ≤ 3.1 -0.67le x_1le3.1−0.67≤x**************************1≤3.1
Conare valores omnium lineamentorum in simili ambitu per scalas conservare, ut ictum earum mutationum in valores praedictorum prope sit (-3,3).
Si sumptus munus J magnum fit, significat gradum magnitudinis (learning rate) ineptum esse vel codicem esse perperam.
Nota: numerus iterations variat ab machina ad machinam
Praeter curvas hauriendas ut iterationis punctum determinare, concursus latae sententiae etiam adhiberi potest
Sit ε aequalis
1
0
−
3
10^{-3}
10−3si decre- mentum J minor est quam hoc paucitas, confluendum putatur.
Aedificare pluma engineering per mutationem vel compositionem ad plura optiones
fw ⃗ , b ( x ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + b f_{vec{w},b}(vec{x}) = w_1x_1+w_2x_2+w_3x_3+bf****w**************,b(x**************************)=w**************1x**************************1+w**************2x**************************2+w**************3x**************************3+b
Nota: regressio polynomialis adhiberi potest pro congruentibus linearibus et nonlinearibus