2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
import torch
x = torch.arange(16).reshape(1,4,4)
print(x)
print('--------')
a = x.sum(axis = 1,keepdim=True)
a2 = x.sum(axis = 1,keepdim=False)
a3 = x.sum(axis = 0,keepdim=True)
a4 = x.sum(axis = 0,keepdim=False)
a5 = x.sum(axis = 2,keepdim=True)
print(a)
print(a2)
print('----------')
print(a3)
print(a4)
print(a5)
import torch
x = torch.arange(16).reshape(4,4)
print(x)
print('--------')
a = x.sum(axis = 1,keepdim=True)
a2 = x.sum(axis = 1,keepdim=False)
print(a)
print(a2)
print(x/a)
Haec duo exempla compone ad explicandas mutationes in axe diversis circumstantiis.
Operationes dimensionales in tensoriis et summationibus intellectus per axes specificas in PyTorch aliquid temporis accipit. Has operationes pedetentim per duo exempla resolvemus et axis mutationes sub diversis condicionibus singillatim exponamus.
import torch
x = torch.arange(16).reshape(1, 4, 4)
print(x)
print('--------')
a = x.sum(axis=1, keepdim=True)
a2 = x.sum(axis=1, keepdim=False)
a3 = x.sum(axis=0, keepdim=True)
a4 = x.sum(axis=0, keepdim=False)
a5 = x.sum(axis=2, keepdim=True)
print(a)
print(a2)
print('----------')
print(a3)
print(a4)
print(a5)
tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
Hoc est figura (1, 4, 4)
tensorium. Cogitare possumus eam ut massam continens 4x4 matrix.
x.sum(axis=1, keepdim=True)
Summa per axem 1 (i.e. directio secundae dimensionis 4), dimensiones servans.
tensor([[[24, 28, 32, 36]]])
Figura fit (1, 1, 4)
。
x.sum(axis=1, keepdim=False)
Summa per axem 1, nulla dimensionalitas servatur.
tensor([[24, 28, 32, 36]])
Figura fit (1, 4)
。
x.sum(axis=0, keepdim=True)
Summa per axem 0 (i.e. directio primae dimensionis 1), servans dimensiones.
tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
Quia tensor originalis solum unum elementum in axe 0 habet, consequens est idem ac tensor originalis, cum figura (1, 4, 4)
。
x.sum(axis=0, keepdim=False)
Summa secundum axem 0, dimensionalitas non servatur.
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Figura fit (4, 4)
。
x.sum(axis=2, keepdim=True)
Summa per axem 2 (i.e. tertia dimensio, directio 4), dimensiones servans.
tensor([[[ 6],
[22],
[38],
[54]]])
Figura fit (1, 4, 1)
。
keepdim=True
Summa ratio servabitur, numerus dimensionum eventus non mutatur, sed magnitudo summarum dimensionum 1 fit.keepdim=False
Dimensiones summae tollentur, et numerus dimensionum in exitu minuetur.import torch
x = torch.arange(16).reshape(4, 4)
print(x)
print('--------')
a = x.sum(axis=1, keepdim=True)
a2 = x.sum(axis=1, keepdim=False)
print(a)
print(a2)
print(x/a)
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Hoc est figura (4, 4)
tensorium.
x.sum(axis=1, keepdim=True)
Summa per axem 1 (i.e. directio secundae dimensionis 4), dimensiones servans.
tensor([[ 6],
[22],
[38],
[54]])
Figura fit (4, 1)
。
x.sum(axis=1, keepdim=False)
Summa per axem 1, nulla dimensionalitas servatur.
tensor([ 6, 22, 38, 54])
Figura fit (4,)
。
x / a
tensor([[0.0000, 0.1667, 0.3333, 0.5000],
[0.1818, 0.2273, 0.2727, 0.3182],
[0.2105, 0.2368, 0.2632, 0.2895],
[0.2222, 0.2407, 0.2593, 0.2778]])
Haec est summa uniuscuiusque elementi per ordinem respondentem divisa, unde sequitur;
tensor([[ 0/6, 1/6, 2/6, 3/6],
[ 4/22, 5/22, 6/22, 7/22],
[ 8/38, 9/38, 10/38, 11/38],
[12/54, 13/54, 14/54, 15/54]])
usus keepdim=True
Cum servatis dimensionibus, summa dimensio 1 fit.ususkeepdim=False
Sublatis dimensionibus summae.
Cur ordines in columnis pro reformandis (1, 4, 4)?
Primas notiones recognoscamus primo:
(4, 4)
import torch
x = torch.arange(16).reshape(4, 4)
print(x)
Output:
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Figura tensoris huius est (4, 4)
matrix repraesentat 4x4;
OKhorizontalis;
[ 0, 1, 2, 3]
[ 4, 5, 6, 7]
[ 8, 9, 10, 11]
[12, 13, 14, 15]
Listverticalis;
[ 0, 4, 8, 12]
[ 1, 5, 9, 13]
[ 2, 6, 10, 14]
[ 3, 7, 11, 15]
(1, 4, 4)
x = torch.arange(16).reshape(1, 4, 4)
print(x)
Output:
tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
Figura tensoris huius est (1, 4, 4)
1x4x4 tensorem trium dimensiva repraesentat;
1
significans praepostere magnitudinem.4
ordines significat ordines (per matrix).4
significat columnarum numerum (columellae cuiusque matricis).(4, 4)
:a = x.sum(axis=1, keepdim=True)
print(a)
Output:
tensor([[ 6],
[22],
[38],
[54]])
(1, 4, 4)
:a = x.sum(axis=1, keepdim=True)
print(a)
Output:
tensor([[[24, 28, 32, 36]]])
exist (1, 4, 4)
In tribus dimensionibus tensor, prima dimensio massam magnitudinem repraesentat, ut videtur quod unaquaeque matrix 4x4 adhuc processit in modo duplicato cum operante. Sed quia batch additur dimensio, aliter se habet a tensore duarum dimensivarum in summa operatione.
In specie: