2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Arbor decisio algorithmus est valde popularis apparatus discendi algorithmus qui ad classificationem et regressionem negotiorum adhiberi potest. Haec est accurata introductio ad algorithmum decisionis arboris, incluso principiorum et causarum exsecutionum, necnon Pythonis codici respondentis.
Lignum decisionis est lignum structurae pro classificatione vel regressione data. Nodis et marginibus constat, ubi quisque nodi interni experimentum plumae repraesentat, uterque ramus exitum probati repraesentat, et uterque nodi folium notam significat valorem vel regressionem.
Processus decisionis lignorum constructionis plerumque sequentes gradus includit:
Hoc est iudicium arboris classificationis casus adhibitis Pythone et scikit-discendo bibliothecam. Utemur Iris praeclaris dataset, quae continet lineamenta et genera trium florum iridis (Setosa, Versicolour, Virginica).
- from sklearn.datasets import load_iris
- from sklearn.model_selection import train_test_split
-
- # 加载数据集
- iris = load_iris()
- X, y = iris.data, iris.target
-
- # 拆分数据集为训练集和测试集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
- from sklearn.tree import DecisionTreeClassifier
-
- # 初始化决策树分类器
- clf = DecisionTreeClassifier()
-
- # 训练模型
- clf.fit(X_train, y_train)
- from sklearn.metrics import accuracy_score
-
- # 预测测试集
- y_pred = clf.predict(X_test)
-
- # 计算准确率
- accuracy = accuracy_score(y_test, y_pred)
- print(f"Accuracy: {accuracy:.2f}")
- import matplotlib.pyplot as plt
- from sklearn.tree import plot_tree
-
- # 可视化决策树
- plt.figure(figsize=(12, 12))
- plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
- plt.show()
Praecedens codice ostendit quomodo bibliotheca scikit-discendo utatur ut Iris dataset oneretur, arborem decisionis classificantis instituat, exemplar perficiendi perpendat, et lignum decisionis visualize. Hoc in casu videre potes quomodo arbor decisionis opera et quomodo in usu applicationis uti possit.