minhas informações de contato
Correspondência[email protected]
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
A poda émodelo de aprendizagem profundaDuas técnicas comuns de otimização são usadas para reduzir a complexidade do modelo e melhorar a velocidade de inferência, e são adequadas para ambientes com recursos limitados.
A poda é um método de reduzir o tamanho do modelo e o esforço computacional, removendo parâmetros sem importância ou redundantes do modelo. A poda é geralmente dividida nos seguintes tipos:
A poda de peso reduz o número de parâmetros do modelo removendo elementos próximos de zero na matriz de peso. Os métodos comuns são:
Exemplo:
import torch
# 假设有一个全连接层
fc = torch.nn.Linear(100, 100)
# 获取权重矩阵
weights = fc.weight.data.abs()
# 设定剪枝阈值
threshold = 0.01
# 应用剪枝
mask = weights > threshold
fc.weight.data *= mask
A poda de canal é usada principalmente pararede neural convolucional , reduzindo a quantidade de computação removendo canais sem importância na camada convolucional. Os métodos comuns são:
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
model = ConvNet()
# 获取卷积层的权重
weights = model.conv1.weight.data.abs()
# 计算每个通道的L1范数
channel_importance = torch.sum(weights, dim=[1, 2, 3])
# 设定剪枝阈值
threshold = torch.topk(channel_importance, k=32, largest=True).values[-1]
# 应用剪枝
mask = channel_importance > threshold
model.conv1.weight.data *= mask.view(-1, 1, 1, 1)
A remoção de camadas remove camadas inteiras da rede para reduzir a profundidade computacional do modelo. Esta abordagem é mais radical e é frequentemente usada em conjunto com Model Architecture Search (NAS).
import torch.nn as nn
class LayerPrunedNet(nn.Module):
def __init__(self, use_layer=True):
super(LayerPrunedNet, self).__init__()
self.use_layer = use_layer
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
def forward(self, x):
x = self.conv1(x)
if self.use_layer:
x = self.conv2(x)
return x
# 初始化网络,选择是否使用第二层
model = LayerPrunedNet(use_layer=False)