Mi informacion de contacto
Correo[email protected]
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
La poda esmodelo de aprendizaje profundoSe utilizan dos técnicas comunes de optimización para reducir la complejidad del modelo y mejorar la velocidad de inferencia, y son adecuadas para entornos con recursos limitados.
La poda es un método para reducir el tamaño del modelo y el esfuerzo computacional mediante la eliminación de parámetros redundantes o sin importancia en el modelo. La poda generalmente se divide en los siguientes tipos:
La poda de peso reduce la cantidad de parámetros del modelo al eliminar elementos cercanos a cero en la matriz de peso. Los métodos comunes son:
Ejemplo:
import torch
# 假设有一个全连接层
fc = torch.nn.Linear(100, 100)
# 获取权重矩阵
weights = fc.weight.data.abs()
# 设定剪枝阈值
threshold = 0.01
# 应用剪枝
mask = weights > threshold
fc.weight.data *= mask
La poda de canales se utiliza principalmente parared neuronal convolucional , reduciendo la cantidad de cálculo al eliminar canales sin importancia en la capa convolucional. Los métodos comunes son:
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
model = ConvNet()
# 获取卷积层的权重
weights = model.conv1.weight.data.abs()
# 计算每个通道的L1范数
channel_importance = torch.sum(weights, dim=[1, 2, 3])
# 设定剪枝阈值
threshold = torch.topk(channel_importance, k=32, largest=True).values[-1]
# 应用剪枝
mask = channel_importance > threshold
model.conv1.weight.data *= mask.view(-1, 1, 1, 1)
La poda de capas elimina capas de red enteras para reducir la profundidad computacional del modelo. Este enfoque es más radical y se utiliza a menudo junto con Model Architecture Search (NAS).
import torch.nn as nn
class LayerPrunedNet(nn.Module):
def __init__(self, use_layer=True):
super(LayerPrunedNet, self).__init__()
self.use_layer = use_layer
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
def forward(self, x):
x = self.conv1(x)
if self.use_layer:
x = self.conv2(x)
return x
# 初始化网络,选择是否使用第二层
model = LayerPrunedNet(use_layer=False)