2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
-- 创建 user_activity 表
DROP TABLE IF EXISTS user_activity ;
CREATE TABLE user_activity (
user_id STRING,
activity_start TIMESTAMP,
activity_end TIMESTAMP
);
-- 插入数据
INSERT INTO user_activity VALUES
('user1', '2024-07-11 08:00:00', '2024-07-11 09:00:00'),
('user2', '2024-07-11 08:30:00', '2024-07-11 09:30:00'),
('user3', '2024-07-11 09:00:00', '2024-07-11 10:00:00'),
('user4', '2024-07-11 09:15:00', '2024-07-11 09:45:00'),
('user5', '2024-07-11 09:30:00', '2024-07-11 10:30:00'),
('user6', '2024-07-11 10:00:00', '2024-07-11 11:00:00'),
('user7', '2024-07-11 08:05:00', '2024-07-11 08:55:00'),
('user8', '2024-07-11 08:45:00', '2024-07-11 09:15:00'),
('user9', '2024-07-11 09:05:00', '2024-07-11 10:05:00'),
('user10', '2024-07-11 09:25:00', '2024-07-11 10:25:00'),
('user11', '2024-07-11 08:10:00', '2024-07-11 09:10:00'),
('user12', '2024-07-11 08:20:00', '2024-07-11 09:20:00'),
('user13', '2024-07-11 08:35:00', '2024-07-11 09:35:00'),
('user14', '2024-07-11 08:50:00', '2024-07-11 09:50:00'),
('user15', '2024-07-11 09:10:00', '2024-07-11 10:10:00'),
('user16', '2024-07-11 09:20:00', '2024-07-11 10:20:00'),
('user17', '2024-07-11 09:40:00', '2024-07-11 10:40:00'),
('user18', '2024-07-11 10:05:00', '2024-07-11 11:05:00'),
('user19', '2024-07-11 10:15:00', '2024-07-11 11:15:00'),
('user20', '2024-07-11 10:25:00', '2024-07-11 11:25:00');
Berechnen Sie die maximale Anzahl an Personen, die zu jedem Zeitpunkt für ein bestimmtes System online sind.
Beispiel für Ergebnisse:
Aktivitätszeit | max_Benutzer |
---|---|
2024-07-11 08 | 8 |
2024-07-11 09 | 9 |
… | … |
Ergebnispresse activity_time
Aufsteigend.
In:
activity_time
Gibt den statistischen Zeitpunkt an;max_users
Gibt die höchste Spitzenzahl an Personen zu diesem Zeitpunkt an.select
date_format(activity_time,'yyyy-MM-dd HH') activity_time,
max(total_users) max_users
from
(select
activity_time,
sum(flag) over(order by activity_time) total_users
from
(select
activity_start activity_time,
1 flag
from
user_activity
union all
select
activity_end activity_time,
-1 flag
from
user_activity)t1
)t2
group by
date_format(activity_time,'yyyy-MM-dd HH');
Die Ausgabe ist wie folgt:
Der Kern dieser Frage ist die Unterabfrage t2
Die Logik in:
select
activity_time,
sum(flag) over(order by activity_time) total_users
from
(select
activity_start activity_time,
1 flag
from
user_activity
union all
select
activity_end activity_time,
-1 flag
from
user_activity)t1;
Zuerst führen wir eine Unterabfrage durch t1
Konvertieren Sie Spalten in Zeilen. Warum müssen Sie das tun? Dies dient natürlich der statistischen Vereinfachung.
Lassen Sie uns darüber nachdenken, ob sich die Anzahl der Personen im System erhöht, wenn sich ein Benutzer anmeldet und das System betritt. +1
Wird im Gegenteil die Anzahl der Personen zunehmen, wenn der Benutzer das Programm verlässt? -1
。
Wenn wir die Anmelde- und Abmeldezeiten in dieselbe Spalte eingeben und nach Zeit sortieren, können wir dann genau berechnen, wie viele Personen zu jedem Zeitpunkt online sind? Dies ist eine Unterabfrage. t2
Wir führen kumulative Berechnungen über Fensterfunktionen durch.t2
Das Ergebnis sieht so aus:
2024-07-11 08:00:00 1
2024-07-11 08:05:00 2
2024-07-11 08:10:00 3
2024-07-11 08:20:00 4
2024-07-11 08:30:00 5
2024-07-11 08:35:00 6
2024-07-11 08:45:00 7
2024-07-11 08:50:00 8
2024-07-11 08:55:00 7
2024-07-11 09:00:00 7
2024-07-11 09:00:00 7
2024-07-11 09:05:00 8
2024-07-11 09:10:00 8
2024-07-11 09:10:00 8
2024-07-11 09:15:00 8
2024-07-11 09:15:00 8
2024-07-11 09:20:00 8
2024-07-11 09:20:00 8
2024-07-11 09:25:00 9
2024-07-11 09:30:00 9
2024-07-11 09:30:00 9
2024-07-11 09:35:00 8
2024-07-11 09:40:00 9
2024-07-11 09:45:00 8
2024-07-11 09:50:00 7
2024-07-11 10:00:00 7
2024-07-11 10:00:00 7
2024-07-11 10:05:00 7
2024-07-11 10:05:00 7
2024-07-11 10:10:00 6
2024-07-11 10:15:00 7
2024-07-11 10:20:00 6
2024-07-11 10:25:00 6
2024-07-11 10:25:00 6
2024-07-11 10:30:00 5
2024-07-11 10:40:00 4
2024-07-11 11:00:00 3
2024-07-11 11:05:00 2
2024-07-11 11:15:00 1
2024-07-11 11:25:00 0
Zum Schluss gruppieren und aggregieren Sie nach Zeitpunkten max
Die Funktion ermittelt zu jedem Zeitpunkt die maximale Spitzenanzahl an Personen und führt ~ aus