2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
environnement de laboratoire :
Machine physique Windows : 192.168.1.4
WSL Ubuntu 20.04.6 LTS : 172.19.32.196
Un serveur http sous Windows : HFS, ressemble probablement à ceci :
Le client est Ubuntu, le serveur est le serveur http (ci-après dénommé serveur ou serveur) et l'adresse IP du serveur est transmise au programme via des paramètres.
Le code source est à la fin.
Le programme de fonction principal est divisé en parties suivantes :
1. Obtenez les paramètres , et sélectionnez la carte réseau pour la communication via la communication netlink (en fait, Ubuntu n'a qu'une seule carte réseau, l'adresse IP est 172.19.32.196), et initialisez l'adresse IP et le port du serveur et du client. Pour plus d'informations sur la sélection d'une carte réseau pour la communication via la communication netlink, veuillez vous référer au lien suivant :
Communication Netlink - lisez la table de routage pour obtenir l'IP de la carte réseau de communication
Une partie du code :
...
// netlink通信
uint32_t src_address = getLocalIPAddress(inet_addr(dst));
...
src_addr.sin_family = AF_INET;
src_addr.sin_port = htons((uint16_t) getpid()); // 将当前进程ID作为源端口
src_addr.sin_addr = *(struct in_addr *) &src_address;
dst_addr.sin_family = AF_INET;
dst_addr.sin_port = htons(HTTP_PORT);
dst_addr.sin_addr.s_addr = inet_addr(dst);
...
2. Créez deux sockets, envoyer le socket et recevoir le socket, lier le client (cette étape est facultative, car le quatre-tuple dans cet exemple est inchangé) et définir les attributs du protocole de socket.
Une partie du code :
...
send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
sizeof(struct sockaddr_in)) < 0);
int one = 1;
setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one));
...
Créez des sockets d'envoi et de réception :
AF_INET représente la suite de protocoles TCP/IP – IPv4 ;
SOCK_RAW indique que le type de socket est un socket brut ;
Le troisième paramètre est le paramètre de protocole. IPPROTO_RAW signifie que les développeurs peuvent construire et analyser eux-mêmes les paquets de données IP. L'utiliser comme type de protocole pour envoyer des sockets nous oblige à encapsuler nous-mêmes les paquets de données sortants et à calculer la somme de contrôle. , indiquant que le paquet de données reçu est un paquet de données TCP.
Lier l'adresse IP et le port du client: Cette étape n'est pas nécessaire. Comme mentionné ci-dessus, les adresses IP et les ports des deux parties restent inchangés.
Définir les propriétés du protocole de socket:setsockopt définit les propriétés du socket de réception. Le deuxième paramètre est l'option socket. Les options courantes sont :
(1) Options de niveau de prise(SOL_SOCKET)
SO_REUSEADDR : Autoriser la réutilisation des adresses locales.
SO_RCVBUF : définissez la taille du tampon de réception.
SO_SNDBUF : définissez la taille du tampon d'envoi.
SO_BROADCAST : permet d'envoyer des messages diffusés.
SO_KEEPALIVE : activez le mécanisme keep-alive et vérifiez si la connexion est valide.
(2) Option de couche IP (IPPROTO_IP)
IP_TTL : définissez la durée de vie (TTL) des datagrammes IP.
IP_HDRINCL : demande à l'application de fournir des en-têtes IP.
(3) Option de couche TCP (IPPROTO_TCP)
TCP_NODELAY : désactivez l'algorithme Nagle pour réduire le délai.
TCP_MAXSEG : définissez la taille maximale du segment TCP.
Dans cet exemple, l'option socket est définie sur l'option de couche IP IP_HDRINCL de IPPROTO_IP - indiquant que le paquet reçu contient un en-tête IP.
connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr);
//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr)
{
int ret = 0;
// Initialize the TCP Session State with the given details
bzero(&tcp_state, sizeof(tcp_state__t));
tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE; // 初始化MSS
tcp_state.client_window_size = CLIENT_WINDOW_SIZE; // 初始化拥塞窗口
tcp_state.client_next_seq_num = STARTING_SEQUENCE; // 客户端下个包的seq
tcp_state.session_info.dst_addr = *dst_addr; // 目的地址
tcp_state.session_info.src_addr = *src_addr; // 源地址
tcp_state.session_info.recv_fd = recv_fd; // 接收句柄
tcp_state.session_info.send_fd = send_fd; // 发送句柄
tcp_state.syn_retries = 5; // 重传次数
tcp_state.cwindow_size = 1; // 拥塞窗口值
initialize_mutex(&tcp_state.tcp_state_lock);
initialize_mutex(&tcp_state.session_info.send_fd_lock);
tcp_flags_t flags = {0};
flags.ack = 1;
flags.syn = 1;
if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
|| ((ret = send_ack_segment(0)) < 0))
{
printf("Failed to set up TCP Connection!!");
ret = -1;
goto EXIT;
}
tcp_state.tcp_current_state = ESTABLISHED;
EXIT: return ret;
}
Le processus de prise de contact est à peu près le suivant :
On voit qu’elle se divise en trois étapes :
1. Envoyez le paquet SYN, la fonction correspondante est : send_syn();
create_packet() crée un paquet TCP. Cette fonction est très importante et implémentée de manière très intelligente En définissant le pointeur de décalage, l'en-tête IP, l'en-tête TCP et les données peuvent être trouvés. L'indicateur SYN de TCP doit être défini sur 1, puis l'en-tête est construit - build_packet_headers La tâche spécifique consiste à encapsuler l'en-tête TCP, à calculer la somme de contrôle TCP, à encapsuler l'en-tête IP et à calculer la somme de contrôle. Dans le diagramme de transition d'état TCP, une fois que le client a envoyé le paquet SYN, son état passe de CLOSED à SYN_SENT, donc l'état TCP doit être défini : tcp_state.tcp_current_state = SYN_SENT, le paquet de données peut alors être envoyé en plus d'utiliser sendto. pour envoyer des données, pour créer un minuteur de retransmission, définissez sa fonction de rappel. Après l'envoi du paquet SYN, si aucune réponse n'est reçue dans le délai d'attente, le paquet SYN doit être retransmis. Par conséquent, il est également nécessaire d'écrire le paquet envoyé dans le tampon de la file d'attente circulaire d'envoi. Après l'expiration du délai, les données enregistrées sont retirées de la file d'attente circulaire d'envoi et renvoyées. Cet article ne traitera pas de la file d'attente circulaire.
2. Recevez les paquets SYN/ACK, la fonction correspondante est contain_syn_ack_segment(&flags);
Utilisez la fonction recvfrom pour recevoir des données. Après l'avoir reçu, vous devez effectuer une série de tests, tels que vérifier la somme de contrôle IP, vérifier si les ports source et de destination et l'IP sont corrects, vérifier la somme de contrôle TCP et vérifier si le paquet est envoyé. est un paquet de retransmission. Ensuite, vous devez également définir les directions de décalage de l'en-tête IP, de l'en-tête TCP et des données dans le paquet de données. Vous pouvez ensuite déterminer si les indicateurs SYN et ACK du paquet reçu sont égaux à 1 et s'il s'agit d'un paquet RST. Après avoir terminé ces tâches, vous devez encore traiter ce paquet SYN/ACK, notamment définir la séquence du prochain paquet du serveur, définir la séquence du prochain paquet du client, mettre à jour la valeur de la fenêtre de réception du serveur, mettre à jour la valeur de la fenêtre de congestion, et à partir de la fenêtre de réception, supprimez ce paquet de réponse de la file d'attente circulaire (car il a été traité), libérez l'espace ouvert pour la réception de ce paquet, et mettez à jour le MSS.
3. Envoyez le paquet ACK, la fonction correspondante est send_ack_segment(0) ;
La troisième étape est très simple. Envoyez une réponse indiquant que la négociation à trois est réussie. Le paramètre 0 signifie que l'indicateur FIN est 0, c'est-à-dire que le paquet est un paquet ACK. Définissez l'état TCP sur ESTABLISHED.
Alors, quel est le résultat ? Exécutez le programme et utilisez WireShark pour capturer le paquet :
On peut voir qu'après avoir envoyé le paquet SYN et reçu le SYN/ACK, le client a envoyé d'une manière ou d'une autre un autre paquet RST, puis a envoyé le paquet ACK. Le programme a semblé s'exécuter avec succès, mais en fait la poignée de main à trois pour établir le paquet. la connexion a échoué. .
Quelle est la raison pour ça?
Ce programme utilise des sockets bruts pour la communication, pas des appels système. Lorsque le client envoie SYN/ACK, le système d'exploitation reçoit d'abord le paquet, puis vérifie s'il existe un socket correspondant (créé à l'aide d'appels système) localement. s'il n'y a personne, alors un paquet RST sera envoyé, puis la négociation à trois ne parviendra pas à établir la connexion. .
Alors comment le résoudre ?
Étant donné que ce programme est principalement destiné à l'apprentissage expérimental, la solution peut être d'utiliser iptables pour supprimer les paquets RST envoyés par la machine. À ce stade, le serveur ne recevra pas les paquets RST envoyés par le client et la connexion pourra être établie avec succès. !
Script shell implémenté :
#!/bin/sh
if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi
./handshake "$@"
Vérifiez d'abord si la commande iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP est exécutée. Sinon, exécutez-la à nouveau.
Voir les résultats:
succès!
Enfin, ce programme implémente uniquement la poignée de main à trois et n'implémente pas la vague à quatre.
Code source:
exécuter.sh
#!/bin/sh
if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi
./handshake "$@"
Makefile
CFLAGS= -g -Werror -lrt -lpthread
CC=gcc
all:
$(CC) handshake.c routing_table.c tcp_handler.c $(CFLAGS) -o handshake
clean:
rm -rf handshake
poignée de main.c
#include "routing_table.h"
#include "tcp_handler.h"
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>
#define WRITE_BUFFER_SIZE 2048
#define RECV_BUFFER_LENGTH 32768
#define REQ_LENGTH 256
#define STRIP_LEADING_NEWLINE_CHAR(ptr)
while(*ptr == 'n')
ptr++;
#define STRIP_LEADING_WHITESPACES(ptr)
while(*ptr == ' ')
ptr++;
#define STRIP_TRAILING_CARRIAGE_RETURN(ptr) (ptr[strlen(ptr)-1] = '0')
int main(int argc, char** argv)
{
int send_sock_fd = -1, recv_sock_fd = -1;
struct sockaddr_in src_addr, dst_addr;
char dst[REQ_LENGTH] = {0};
if (argc != 2)
{
printf("Usage: ./rawhttpget ipn");
exit(1);
}
strncpy(dst, argv[1], REQ_LENGTH);
memset(&src_addr, 0, sizeof(struct sockaddr_in));
memset(&dst_addr, 0, sizeof(struct sockaddr_in));
// netlink通信
uint32_t src_address = getLocalIPAddress(inet_addr(dst));
src_addr.sin_family = AF_INET;
src_addr.sin_port = htons((uint16_t) getpid()); // 将当前进程ID作为源端口
src_addr.sin_addr = *(struct in_addr *) &src_address;
dst_addr.sin_family = AF_INET;
dst_addr.sin_port = htons(HTTP_PORT);
dst_addr.sin_addr.s_addr = inet_addr(dst);
send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); // IPPROTO_RAW:表示开发人员可以自己构造和解析 IP 数据包
if (send_sock_fd < 0)
{
printf("Error: Creation of Raw Socket failed: %s!!n", strerror(errno));
exit(1);
}
recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP); // IPPROTO_TCP表示接收TCP包
if (recv_sock_fd < 0)
{
printf("Error: Creation of Raw Socket failed: %s!!n", strerror(errno));
exit(1);
}
if (bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
sizeof(struct sockaddr_in)) < 0)
{
printf("Error: Unable to bind the receiving socket: %sn",
strerror(errno));
exit(1);
}
//IP_HDRINCL to tell the kernel that headers are included in the packet
int one = 1;
if (setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one)) < 0) // IP_HDRINCL:数据中包含IP头
{
perror("Error setting IP_HDRINCL");
exit(1);
}
char psrc_addr[256] = {0}, pdst_addr[256] = {0};
printf("Src Address: %s Destination Address: %sn",
inet_ntop(AF_INET, &src_addr.sin_addr.s_addr, psrc_addr, 256),
inet_ntop(AF_INET, &dst_addr.sin_addr.s_addr, pdst_addr, 256));
if (connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr) < 0)
{
printf("TCP Connection Failedn");
goto EXIT;
}
else
printf("TCP Connection Successfuln");
EXIT: close(send_sock_fd);
close(recv_sock_fd);
}
table_de_routage.c
#include <stdio.h>
#include <stdlib.h>
#include <bits/sockaddr.h>
#include <asm/types.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
#include <errno.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netdb.h>
#include <unistd.h>
#include <string.h>
#define BUFFER_LENGTH 8192
typedef struct rt_request
{
struct nlmsghdr nl;
struct rtmsg rt;
char payload[BUFFER_LENGTH];
} rt_request;
uint32_t fetch_interface_ip(uint32_t if_index)
{
int family;
struct ifreq ifreq;
char host[256] =
{ 0 }, if_name[256] =
{ 0 };
uint32_t src_addr;
int fd;
if_indextoname(if_index, if_name); // 根据索引值获取网络接口名,如eth0
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0)
{
perror("socket()");
exit(EXIT_FAILURE);
}
memset(&ifreq, 0, sizeof ifreq);
strncpy(ifreq.ifr_name, if_name, IFNAMSIZ);
if (ioctl(fd, SIOCGIFADDR, &ifreq) != 0) // 获取接口ip
{
/* perror(name); */
return -1; /* ignore */
}
switch (family = ifreq.ifr_addr.sa_family)
{
case AF_UNSPEC:
// return;
return -1; /* ignore */
case AF_INET:
case AF_INET6:
getnameinfo(&ifreq.ifr_addr, sizeof ifreq.ifr_addr, host, sizeof host,
0, 0, NI_NUMERICHOST);
break;
default:
sprintf(host, "unknown (family: %d)", family);
}
inet_pton(AF_INET, host, &src_addr);
close(fd);
return src_addr;
}
void formRequest(rt_request* req)
{
bzero(req, sizeof(req));
/*
struct nlmsghdr 为 netlink socket 自己的消息头,
这用于多路复用和多路分解 netlink 定义的所有协议类型以及其它一些控制,
netlink 的内核实现将利用这个消息头来多路复用和多路分解已经其它的一些控制,
因此它也被称为netlink 控制块。因此,应用在发送 netlink 消息时必须提供该消息头。
*/
req->nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
req->nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP; // NLM_F_REQUEST表示消息是一个请求
req->nl.nlmsg_type = RTM_GETROUTE; // nlmsg_type消息内容
// 填充rtmsg结构体,即路由表管理结构体,对于上面的RTM_GETROUTE操作来说,只需要定义下面两个内容
req->rt.rtm_family = AF_INET;
req->rt.rtm_table = RT_TABLE_MAIN;
}
void sendRequest(int sock_fd, struct sockaddr_nl *pa, rt_request* req)
{
struct msghdr msg; // sendmsg和recvmsg的参数,描述发送消息和接收消息的结构体
struct iovec iov; // iovec结构体用于描述一个数据缓冲区
int rtn;
bzero(pa, sizeof(pa));
pa->nl_family = AF_NETLINK;
bzero(&msg, sizeof(msg));
msg.msg_name = pa;
msg.msg_namelen = sizeof(*pa);
iov.iov_base = (void *) req;
iov.iov_len = req->nl.nlmsg_len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
while (1)
{
if ((rtn = sendmsg(sock_fd, &msg, 0)) < 0)
{
if (errno == EINTR)
continue;
else
{
printf("Error: Unable to send NetLink message:%sn",
strerror(errno));
exit(1);
}
}
break;
}
}
int receiveReply(int sock_fd, char* response_buffer)
{
char* p;
int nll, rtl, rtn;
struct nlmsghdr *nlp;
struct rtmsg *rtp;
bzero(response_buffer, BUFFER_LENGTH);
p = response_buffer;
nll = 0;
while (1)
{
if ((rtn = recv(sock_fd, p, BUFFER_LENGTH - nll, 0)) < 0)
{
if (errno == EINTR)
continue;
else
{
printf("Failed to read from NetLink Socket: %sn",
strerror(errno));
exit(1);
}
}
nlp = (struct nlmsghdr*) p;
if (nlp->nlmsg_type == NLMSG_DONE)
break;
p += rtn;
nll += rtn;
}
return nll;
}
uint32_t readReply(char *response, int nll, in_addr_t dst_address)
{
struct nlmsghdr *nlp = NULL;
struct rtmsg *rtp = NULL;
struct rtattr *rtap = NULL;
int rtl = 0, found_route = 0, default_route = 0;
uint32_t route_addr, net_mask;
uint32_t if_index = -1;
nlp = (struct nlmsghdr*) response;
for (; NLMSG_OK(nlp, nll); nlp = NLMSG_NEXT(nlp, nll)) // NLMSG_OK:检查nlh地址是否是一条完整的消息
{ // NLMSG_NEXT:当前消息地址,返回下一个消息地址
rtp = (struct rtmsg *) NLMSG_DATA(nlp); // NLMSG_DATA:从nlh首地址向后移动到data起始位置
if (rtp->rtm_table != RT_TABLE_MAIN)
continue;
// RTM_RTA:输入route message指针,返回route第一个属性首地址
rtap = (struct rtattr *) RTM_RTA(rtp); // rtattr结构体封装可选路由信息的通用结构,用于表示 Netlink 消息的属性
rtl = RTM_PAYLOAD(nlp); // RTM_PAYLOAD:即rtmsg层封装的数据长度,相当于TCP数据包去掉IP报头和TCP报头长度得到TCP数据部分长度
found_route = 0;
default_route = 1;
for (; RTA_OK(rtap, rtl); rtap = RTA_NEXT(rtap, rtl)) // RTA_OK:判断一个属性rta是否正确
{ // RTA_NEXT:先对attrlen减去rta属性内容的全部长度,然后返回下一个rtattr的首地址
switch (rtap->rta_type)
{
// destination IPv4 address
case RTA_DST:
default_route = 0;
route_addr = *((uint32_t*) RTA_DATA (rtap));
net_mask = 0xFFFFFFFF;
net_mask <<= (32 - rtp->rtm_dst_len);
net_mask = ntohl(net_mask);
if (route_addr == (dst_address & net_mask))
found_route = 1;
else if (route_addr == 0)
default_route = 1;
break;
// unique ID associated with the network
// interface
case RTA_OIF: // Output interface index
if (found_route || default_route)
if_index = *((uint32_t*) RTA_DATA (rtap));
break;
default:
break;
}
}
if (found_route)
break;
}
return if_index;
}
// Netlink分层模型及消息格式:https://onestraw.github.io/linux/netlink-message/
uint32_t getLocalIPAddress(in_addr_t dst_address)
{
int route_sock_fd = -1, res_len = 0;
struct sockaddr_nl sa, pa; // sa为消息接收者的 netlink 地址
uint32_t if_index;
rt_request req = {0};
char response_payload[BUFFER_LENGTH] = {0};
// Open Routing Socket
if ((route_sock_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) == -1)
{
printf("Error: Failed to open routing socket: %sn", strerror(errno));
exit(1);
}
bzero(&sa, sizeof(sa));
// nl_groups == 0 表示该消息为单播
sa.nl_family = AF_NETLINK;
sa.nl_pid = getpid(); // nl_pid表示接收消息者的进程ID
bind(route_sock_fd, (struct sockaddr*) &sa, sizeof(sa));
formRequest(&req); // 构造netlink消息
sendRequest(route_sock_fd, &pa, &req); // 发送消息
res_len = receiveReply(route_sock_fd, response_payload); // 接收消息
if_index = readReply(response_payload, res_len, dst_address); // 从接收的消息中获取if(network interface)
close(route_sock_fd);
return fetch_interface_ip(if_index); // 从if_index获取接口ip
}
table_de_routage.h
#include <sys/types.h>
#include <netinet/in.h>
#ifndef ROUTING_TABLE_H
#define ROUTING_TABLE_H
uint32_t getLocalIPAddress(in_addr_t dst_address);
#endif
tcp_handler.c
#include "tcp_handler.h"
#define STARTING_SEQUENCE 1
#define TCP_WORD_LENGTH_WITH_NO_OPTIONS 5
#define HAS_TCP_OPTIONS(ptr) (ptr->doff > TCP_WORD_LENGTH_WITH_NO_OPTIONS)
#define TCP_OPTION_OFFSET(ptr) ((char*)ptr + (TCP_WORD_LENGTH_WITH_NO_OPTIONS * WORD_LENGTH))
#define TCP_OPTION_LENGTH(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH)
#define END_OF_TCP_OPTION_CHECK(ptr) ((*ptr) == 0)
#define TCP_OPTIONS_LEN(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH )
#define IS_NO_OPERATION(ptr) ((*ptr) == 1)
#define IS_MSS(ptr) ((*ptr) == 2)
#define OPTION_LENGTH(ptr) (*(ptr+1))
#define min(a,b)
({ __typeof__ (a) _a = (a);
__typeof__ (b) _b = (b);
_a < _b ? _a : _b; })
#define TCP_OPTION_DATA_OFFSET 2
#define IS_DUPLICATE_TCP_SEGMENT(tcph) (ntohl(tcph->seq) < tcp_state.server_next_seq_num)
#define IS_DUPLICATE_ACK(tcph) (tcph->ack && (tcph->ack_seq == tcp_state.last_acked_seq_num) )
#define WRAP_ROUND_BUFFER_SIZE(index)
({ __typeof__ (index) _index = (index);
( _index + 1) > MAX_BUFFER_SIZE ? 0 : (_index + 1); })
tcp_state__t tcp_state;
/*
Generic checksum calculation function
*/
static unsigned short csum(uint16_t *ptr, unsigned int nbytes)
{
uint32_t sum;
uint16_t answer;
sum = 0;
while (nbytes > 1)
{
sum += *ptr++;
nbytes -= 2; // 以16位的字为单位计算和
}
if (nbytes == 1) // 如果总长度为奇数个字节,则在最后增添一个位都为0的字节
{
sum += *(unsigned char*) ptr;
}
// 将32bit数据压缩成16bit数据,即将高16bit与低16bit相加,将进位加到低16位上,最后取反
sum = (sum >> 16) + (sum & 0xffff);
sum = sum + (sum >> 16);
answer = (short) ~sum;
return (answer);
}
static void calculate_tcp_checksum(struct tcphdr* tcph,
uint16_t tcp_payload_len, uint32_t src_addr, uint32_t dst_addr)
{
pseudo_header psh;
char* pseudogram;
uint16_t tcphdr_len = (tcph->doff * WORD_LENGTH); // tcph->doff:以32位字为单位表示TCP头长
// pseudoheader
bzero(&psh, sizeof(pseudo_header));
psh.source_address = src_addr;
psh.dest_address = dst_addr;
psh.protocol = IPPROTO_TCP;
psh.tcp_length = htons(tcphdr_len + tcp_payload_len);
int psize = sizeof(pseudo_header) + tcphdr_len + tcp_payload_len;
pseudogram = malloc(psize);
// TCP伪首部、TCP头、TCP数据
bzero(pseudogram, psize);
memcpy(pseudogram, &psh, sizeof(pseudo_header));
memcpy(pseudogram + sizeof(pseudo_header), tcph,
tcphdr_len + tcp_payload_len);
// 计算校验和
tcph->check = csum((uint16_t*) pseudogram, (unsigned int) psize);
free(pseudogram);
}
static int validate_ip_checksum(struct iphdr* iph)
{
int ret = -1;
uint16_t received_checksum = iph->check;
iph->check = 0;
if (received_checksum
== csum((uint16_t*) iph, (unsigned int) (iph->ihl * WORD_LENGTH)))
ret = 1;
return ret;
}
static int validate_tcp_checksum(struct tcphdr* tcph,
uint16_t tcp_payload_length)
{
int ret = -1;
uint16_t received_checksum = tcph->check;
tcph->check = 0;
calculate_tcp_checksum(tcph, tcp_payload_length,
*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr,
*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr);
if (received_checksum == tcph->check)
ret = 1;
if (ret < 0) {
printf("received_checksum:%d, tcph->check:%dn", received_checksum, tcph->check);
char psrc_addr[256] = {0}, pdst_addr[256] = {0};
printf("Src Address: %s Destination Address: %sn",
inet_ntop(AF_INET, &tcp_state.session_info.src_addr.sin_addr.s_addr, psrc_addr, 256),
inet_ntop(AF_INET, &tcp_state.session_info.dst_addr.sin_addr.s_addr, pdst_addr, 256));
}
return ret;
}
static packet_t* create_packet()
{
packet_t* packet = malloc(sizeof(packet_t));
// send tcp syn
bzero(packet, sizeof(packet_t));
packet->offset[IP_OFFSET] = packet->payload;
packet->offset[TCP_OFFSET] = packet->payload + sizeof(struct iphdr);
packet->offset[DATA_OFFSET] = packet->payload + sizeof(struct tcphdr)
+ sizeof(struct iphdr);
packet->retransmit_timer_id = NULL;
return packet;
}
static void adjust_layer_offset(packet_t* packet)
{
struct tcphdr *tcph;
struct iphdr *iph;
iph = (struct iphdr *) packet->payload;
tcph = (struct tcphdr *) (packet->payload + (iph->ihl * WORD_LENGTH));
packet->offset[TCP_OFFSET] = (char*) tcph;
packet->offset[DATA_OFFSET] = (char*) (packet->offset[TCP_OFFSET]
+ (tcph->doff * WORD_LENGTH));
}
static void destroy_packet(packet_t* packet)
{
if (packet->retransmit_timer_id != NULL)
timer_delete(packet->retransmit_timer_id);
free(packet);
}
static void remove_acked_entries(uint32_t next_expected_seq)
{
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
while ((tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet_seq
< next_expected_seq)
&& !(tcp_state.sender_info.retx_buffer_head
== tcp_state.sender_info.retx_buffer_tail))
{
destroy_packet(
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet);
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet = NULL;
tcp_state.sender_info.retx_buffer_head =
WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_head);
}
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
static void reset_packet_retransmission_timer(timer_t* timer_id,
uint16_t timeInSecs)
{
struct itimerspec timer_value = {0};
timer_value.it_interval.tv_sec = timeInSecs;
timer_value.it_value.tv_sec = timeInSecs;
if (timer_settime(*timer_id, 0, &timer_value, NULL) < 0)
{
printf("Failed to set time!!");
timer_delete(*timer_id);
*timer_id = NULL;
}
}
static void build_ip_header(struct iphdr* iph, uint16_t ip_payload_len)
{
iph->daddr = *(uint32_t*) &tcp_state.session_info.dst_addr.sin_addr.s_addr;
iph->saddr = *(uint32_t*) &tcp_state.session_info.src_addr.sin_addr.s_addr;
iph->ihl = 5;
iph->protocol = IPPROTO_TCP;
iph->ttl = 255;
iph->version = 4;
iph->tot_len = sizeof(struct iphdr) + ip_payload_len;
iph->check = csum((unsigned short*) iph, sizeof(struct iphdr));
}
static void build_tcp_header(struct tcphdr* tcph, tcp_flags_t* flags,
uint16_t payload_len)
{
tcph->dest = *(uint16_t*) &tcp_state.session_info.dst_addr.sin_port;
tcph->source = *(uint16_t*) &tcp_state.session_info.src_addr.sin_port;
tcph->window = htons(tcp_state.client_window_size);
tcph->seq = htonl(tcp_state.client_next_seq_num);
tcp_state.client_next_seq_num +=
(flags->syn || flags->fin) ? 1 : payload_len;
tcph->doff = (flags->syn) ? 6 : 5;
tcph->syn = flags->syn;
tcph->ack = flags->ack;
tcph->fin = flags->fin;
tcph->psh = flags->psh;
tcph->ack_seq = htonl(tcp_state.server_next_seq_num);
if (flags->syn)
{
char* tcp_options = ((char *) tcph) + sizeof(struct tcphdr);
tcp_options_t mss = {0};
mss.option_type = 2;
mss.option_len = 4;
mss.option_value = htons(1460);
memcpy(tcp_options++, &mss.option_type, sizeof(char));
memcpy(tcp_options++, &mss.option_len, sizeof(char));
memcpy(tcp_options, &mss.option_value, sizeof(uint16_t));
}
}
static void build_packet_headers(packet_t* packet, int payload_len,
tcp_flags_t* flags)
{
struct tcphdr* tcph = (struct tcphdr*) packet->offset[TCP_OFFSET];
struct iphdr* iph = (struct iphdr*) packet->offset[IP_OFFSET];
build_tcp_header(tcph, flags, payload_len);
calculate_tcp_checksum(tcph, payload_len,
*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr,
*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr);
build_ip_header(iph, ((tcph->doff * WORD_LENGTH) + payload_len));
}
static int send_packet(void *buffer, int total_packet_len)
{
int ret = -1;
pthread_mutex_lock(&tcp_state.session_info.send_fd_lock);
while (total_packet_len > 0)
{
//Send the packet
if ((ret = sendto(tcp_state.session_info.send_fd, buffer,
total_packet_len, 0,
(struct sockaddr *) &tcp_state.session_info.dst_addr,
sizeof(struct sockaddr_in))) < 0)
{
if (errno == EINTR)
{
printf("Sendto() Interrupted!!");
continue;
}
else
{
perror("sendto failed");
goto EXIT;
}
}
if (ret == total_packet_len)
break;
total_packet_len -= ret;
buffer += ret;
}
EXIT: pthread_mutex_unlock(&tcp_state.session_info.send_fd_lock);
return ret;
}
static void handle_packet_retransmission()
{
packet_t* packet = NULL;
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
int index = tcp_state.sender_info.retx_buffer_head;
while (index != tcp_state.sender_info.retx_buffer_tail)
{
packet = tcp_state.sender_info.retx_buffer[index].packet;
// 重启重传定时器
reset_packet_retransmission_timer(&packet->retransmit_timer_id, 0);
if (send_packet(packet->payload, packet->payload_len) < 0)
printf("Failed to retransmit packet!!");
reset_packet_retransmission_timer(&packet->retransmit_timer_id, 60);
index++;
}
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
static int send_ack_segment(uint8_t fin)
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags =
{ 0 };
flags.ack = 1;
flags.fin = fin;
build_packet_headers(packet, 0, &flags);
if ((ret = send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
{
printf("Send error!! Exiting.. ");
}
EXIT: destroy_packet(packet);
return ret;
}
static int receive_packet(packet_t *packet)
{
int ret = -1;
while (1)
{
if ((ret = recvfrom(tcp_state.session_info.recv_fd, &packet->payload,
sizeof(packet->payload), 0,
NULL, NULL)) < 0)
{
if (errno == EINTR)
continue;
else
{
perror("recv failed");
return ret;
}
}
//Data received successfully
struct iphdr *iph = (struct iphdr *) &packet->payload;
// printf("packet->payload:%sn", packet->payload);
if (validate_ip_checksum(iph) < 0)
{
printf("IP Checksum validation failed!! Packet dropped!!n");
continue;
}
uint16_t iphdr_len = iph->ihl * WORD_LENGTH;
struct tcphdr *tcph = (struct tcphdr *) ((char*) iph + iphdr_len);
uint16_t tcphdr_len = tcph->doff * WORD_LENGTH;
if (iph->saddr != tcp_state.session_info.dst_addr.sin_addr.s_addr
&& tcph->dest != tcp_state.session_info.src_port
&& tcph->source != tcp_state.session_info.dst_port)
continue;
if (validate_tcp_checksum(tcph,
(ntohs(iph->tot_len) - iphdr_len - tcphdr_len)) < 0)
{
printf("TCP Checksum validation failed!! Packet dropped!!n");
continue;
}
if ( IS_DUPLICATE_ACK(tcph))
{
handle_packet_retransmission();
continue;
}
else if ( IS_DUPLICATE_TCP_SEGMENT(tcph))
{
send_ack_segment(0);
continue;
}
adjust_layer_offset(packet);
packet->payload_len = (ntohs(iph->tot_len) - iphdr_len - tcphdr_len);
// printf("packet->payload_len:%dn", packet->payload_len);
break;
}
return ret;
}
static void process_ack(struct tcphdr *tcph, uint16_t payload_len)
{
tcp_state.server_next_seq_num = (ntohl(tcph->seq) + payload_len); // 当前收到的包的序号是seq,长度是payload_len,那么下一个数据包的seq就是ntohl(tcph->seq) + payload_len
tcp_state.last_acked_seq_num = (ntohl(tcph->ack_seq)); // 下一个发包的seq
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.server_window_size = ntohs(tcph->window); // 更新对端接收窗口值
tcp_state.cwindow_size =
(++tcp_state.cwindow_size > MAX_CONGESTION_WINDOW_SIZE) ?
MAX_CONGESTION_WINDOW_SIZE : tcp_state.cwindow_size;
pthread_cond_signal(&tcp_state.send_window_low_thresh);
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
remove_acked_entries(ntohl(tcph->ack_seq)); // 删除已经收到回应的数据包
// 更新tcp_state.max_segment_size
if (HAS_TCP_OPTIONS(tcph))
{
char* tcp_options_offset = (char*) TCP_OPTION_OFFSET(tcph);
uint16_t total_options_len = TCP_OPTIONS_LEN(tcph);
while (!END_OF_TCP_OPTION_CHECK(tcp_options_offset)
&& total_options_len > 0)
{
if ( IS_NO_OPERATION(tcp_options_offset))
{
tcp_options_offset++;
total_options_len--;
}
else if ( IS_MSS(tcp_options_offset))
{
tcp_state.max_segment_size =
min(tcp_state.max_segment_size,
*((uint16_t*)(tcp_options_offset+TCP_OPTION_DATA_OFFSET)));
tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
total_options_len -= OPTION_LENGTH(tcp_options_offset);
}
else
{
tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
total_options_len -= OPTION_LENGTH(tcp_options_offset);
}
}
}
}
static void retransmission_timer_handler(union sigval value)
{
int buffer_index = value.sival_int;
packet_t* packet = NULL;
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.cwindow_size = 1;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
if (tcp_state.sender_info.retx_buffer[buffer_index].packet == NULL
|| buffer_index < tcp_state.sender_info.retx_buffer_head)
goto EXIT;
packet = tcp_state.sender_info.retx_buffer[buffer_index].packet;
if (send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len) < 0)
{
printf("Failed to retransmit packet!!n");
}
EXIT: pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
void create_retransmission_timer(timer_t* timer, int send_buffer_index)
{
union sigval val;
struct sigevent sev;
struct itimerspec timer_value = {0};
memset(&val, 0, sizeof(val));
memset(&sev, 0, sizeof(sev));
val.sival_int = send_buffer_index;
// SIGEV_THREAD:当定时器到期,内核会(在此进程内)以sigev_notification_attributes为线程属性创建一个线程,
// 并且让它执行sigev_notify_function,传入sigev_value作为为一个参数。
sev.sigev_notify = SIGEV_THREAD;
sev.sigev_value = val;
sev.sigev_notify_function = retransmission_timer_handler; // 定时器到期,重传数据包(即超时重传)
// 创建定时器
// CLOCK_MONOTONIC:从系统启动这一刻起开始计时,不受系统时间被用户改变的影响
if (timer_create(CLOCK_MONOTONIC, &sev, timer) < 0)
{
printf("Failed to create the retransmission timer!!");
*timer = NULL;
goto EXIT;
}
timer_value.it_interval.tv_sec = 60; // it_interval:定时时间 60s
timer_value.it_value.tv_sec = 60; // it_value:单次启动时间 60s
// 设置定时器
if (timer_settime(*timer, 0, &timer_value, NULL) < 0)
{
printf("Failed to set time!!");
timer_delete(*timer);
*timer = NULL;
}
EXIT: return;
}
static int send_tcp_segment(packet_t* packet)
{
int ret = 0;
if ((ret = send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
{
printf("Send error!! Exiting.. ");
goto EXIT;
}
// 创建重传定时器,超时重传数据包 NULL 0
create_retransmission_timer(&packet->retransmit_timer_id,
tcp_state.sender_info.retx_buffer_tail);
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
// 数据包写入发送循环队列
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet_seq =
((struct tcphdr*) &packet->offset[TCP_OFFSET])->seq;
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet =
packet;
// 发送尾指针加一,指向下一个空队列空间
tcp_state.sender_info.retx_buffer_tail =
WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_tail);
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
EXIT: return ret;
}
static int send_syn()
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags = {0};
flags.syn = 1;
build_packet_headers(packet, 0, &flags);
tcp_state.tcp_current_state = SYN_SENT;
return send_tcp_segment(packet);
}
static int receive_syn_ack_segment(tcp_flags_t* flags)
{
int ret = -1;
packet_t* packet = create_packet();
struct tcphdr *tcph;
while (1)
{
if ((ret = receive_packet(packet)) < 0)
{
printf("Receive error!! Exiting.. ");
goto EXIT;
}
tcph = (struct tcphdr *) packet->offset[TCP_OFFSET];
if (tcph->ack == flags->ack && tcph->syn == flags->syn)
break;
if (tcph->rst || !tcp_state.syn_retries)
{
ret = -1;
goto EXIT;
}
}
process_ack(tcph, 1);
EXIT: destroy_packet(packet);
return ret;
}
static int initialize_mutex(pthread_mutex_t* mutex)
{
int ret = -1;
pthread_mutexattr_t mutex_attr;
if ((ret = pthread_mutexattr_init(&mutex_attr)) != 0)
{
printf("Failed to initialize mutex attributen");
ret = -1;
goto EXIT;
}
if ((ret = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_RECURSIVE))
!= 0)
{
printf("Failed to set mutex attributen");
ret = -1;
goto EXIT;
}
if ((ret = pthread_mutex_init(mutex, &mutex_attr)) != 0)
{
printf("Failed to initialize mutex!!n");
ret = -1;
}
EXIT: return ret;
}
static void get_wait_time(struct timespec* timeToWait, uint16_t timeInSeconds)
{
struct timeval now;
int rt;
gettimeofday(&now, NULL);
timeToWait->tv_sec = now.tv_sec + timeInSeconds;
timeToWait->tv_nsec = 0;
}
//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr)
{
int ret = 0;
// Initialize the TCP Session State with the given details
bzero(&tcp_state, sizeof(tcp_state__t));
tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE; // 初始化MSS
tcp_state.client_window_size = CLIENT_WINDOW_SIZE; // 初始化拥塞窗口
tcp_state.client_next_seq_num = STARTING_SEQUENCE; // 客户端下个包的seq
tcp_state.session_info.dst_addr = *dst_addr; // 目的地址
tcp_state.session_info.src_addr = *src_addr; // 源地址
tcp_state.session_info.recv_fd = recv_fd; // 接收句柄
tcp_state.session_info.send_fd = send_fd; // 发送句柄
tcp_state.syn_retries = 5; // 重传次数
tcp_state.cwindow_size = 1; // 拥塞窗口值
initialize_mutex(&tcp_state.tcp_state_lock);
initialize_mutex(&tcp_state.session_info.send_fd_lock);
tcp_flags_t flags = {0};
flags.ack = 1;
flags.syn = 1;
if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
|| ((ret = send_ack_segment(0)) < 0))
{
printf("Failed to set up TCP Connection!!");
ret = -1;
goto EXIT;
}
tcp_state.tcp_current_state = ESTABLISHED;
EXIT: return ret;
}
static int send_fin()
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags = {0};
flags.fin = 1;
flags.ack = 1;
build_packet_headers(packet, 0, &flags);
return send_tcp_segment(packet);
}
int close_tcp()
{
int ret = -1;
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (!((tcp_state.tcp_current_state & ESTABLISHED)
|| (tcp_state.tcp_current_state & CLOSE_WAIT)))
{
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
goto EXIT;
}
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
if ((ret = send_fin()) < 0)
goto EXIT;
struct timespec timeToWait;
get_wait_time(&timeToWait, 10);
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (tcp_state.tcp_current_state & ESTABLISHED)
tcp_state.tcp_current_state = FIN_WAIT_1;
else
tcp_state.tcp_current_state = LAST_ACK;
tcp_state.tcp_write_end_closed = 1;
pthread_cond_timedwait(&tcp_state.tcp_session_closed_notify,
&tcp_state.tcp_state_lock, &timeToWait);
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
EXIT: return ret;
}
static void release_and_update_recv_buffer(packet_t* packet)
{
pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);
tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet =
NULL;
tcp_state.recv_info.recv_buffer_head =
WRAP_ROUND_BUFFER_SIZE(tcp_state.recv_info.recv_buffer_head);
destroy_packet(packet);
pthread_cond_signal(&tcp_state.recv_info.recv_buffer_full);
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
}
int receive_data(char* buffer, int buffer_len)
{
int total_bytes_read = 0, ret = -1;
packet_t* packet = NULL;
struct timespec timeToWait;
while (buffer_len > 0)
{
get_wait_time(&timeToWait, 5);
pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);
if (tcp_state.recv_info.recv_buffer_head
== tcp_state.recv_info.recv_buffer_tail)
{
if (total_bytes_read > 0)
{
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
break;
}
else
{
if ((ret = pthread_cond_timedwait(
&tcp_state.recv_info.recv_buffer_empty,
&tcp_state.recv_info.tcp_recv_lock, &timeToWait)) != 0)
{
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
if (ret == ETIMEDOUT)
{
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (tcp_state.tcp_read_end_closed)
{
printf("TCP Server Closed!!n");
total_bytes_read = -1;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
break;
}
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
continue;
}
else
break;
}
}
}
packet =
tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet;
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
int copied_bytes = 0;
if (packet->payload_len > buffer_len)
{
printf("CHUNKED TRANSFER: %d:%dn", packet->payload_len,
buffer_len);
memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
buffer_len);
packet->offset[DATA_OFFSET] += buffer_len;
packet->payload_len -= buffer_len;
total_bytes_read += buffer_len;
copied_bytes = buffer_len;
buffer_len = 0;
}
else
{
memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
packet->payload_len);
buffer_len -= packet->payload_len;
total_bytes_read += packet->payload_len;
copied_bytes = packet->payload_len;
release_and_update_recv_buffer(packet);
}
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.client_window_size += copied_bytes;
tcp_state.client_window_size =
(tcp_state.client_window_size > CLIENT_WINDOW_SIZE) ?
CLIENT_WINDOW_SIZE : tcp_state.client_window_size;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
}
return total_bytes_read;
}
tcp_handler.h
#ifndef TCP_HANDLER_H_
#define TCP_HANDLER_H_
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <string.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <pthread.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#define TOTAL_LAYERS 2
#define IP_LAYER_OFFSET 0
#define TCP_LAYER_OFFSET 1
#define PAYLOAD_OFFSET 2
#define CLIENT_PORT 35555
#define HTTP_PORT 80
#define RTAX_MAX 8
#define IP_OFFSET 0
#define TCP_OFFSET 1
#define DATA_OFFSET 2
#define MAX_BUFFER_SIZE 400
#define MAX_CLIENT_SEGMENT_SIZE 1460
// #define CLIENT_WINDOW_SIZE 16384
#define CLIENT_WINDOW_SIZE 12000
#define WORD_LENGTH 4
// #define PACKET_MAX_SIZE 16384
#define PACKET_MAX_SIZE 12000
#define MAX_PAYLOAD_LEN (PACKET_MAX_SIZE - sizeof(struct iphdr) - sizeof(struct tcphdr))
#define MAX_CONGESTION_WINDOW_SIZE 1000
typedef enum
{
SYN_SENT = 1,
ESTABLISHED = 2,
FIN_WAIT_1 = 4,
FIN_WAIT_2 = 8,
CLOSE_WAIT = 16,
CLOSING = 32,
LAST_ACK = 64,
CLOSED = 128
} tcp_state_machine_t;
typedef struct
{
uint8_t syn :1;
uint8_t ack :1;
uint8_t fin :1;
uint8_t psh :1;
} tcp_flags_t;
typedef struct
{
uint8_t option_type;
uint8_t option_len;
uint16_t option_value;
} tcp_options_t;
typedef struct
{
char payload[PACKET_MAX_SIZE];
char* offset[TOTAL_LAYERS + 1];
timer_t retransmit_timer_id;
uint16_t payload_len;
} packet_t;
typedef struct
{
packet_t* packet;
uint32_t packet_seq;
} buffered_packet_t;
// TCP 伪首部
typedef struct
{
u_int32_t source_address;
u_int32_t dest_address;
u_int8_t placeholder;
u_int8_t protocol;
u_int16_t tcp_length;
} pseudo_header;
typedef struct
{
struct sockaddr_in src_addr;
struct sockaddr_in dst_addr;
uint16_t src_port;
uint16_t dst_port;
int send_fd;
int recv_fd;
pthread_mutex_t send_fd_lock;
} session_info__t;
typedef struct
{
buffered_packet_t send_buffer[MAX_BUFFER_SIZE];
uint16_t send_buffer_head;
uint16_t send_buffer_tail;
buffered_packet_t retx_buffer[MAX_BUFFER_SIZE];
uint16_t retx_buffer_head;
uint16_t retx_buffer_tail;
pthread_mutex_t tcp_send_lock;
pthread_mutex_t tcp_retx_lock;
pthread_cond_t send_buffer_empty;
pthread_cond_t send_buffer_full;
} tcp_send_data_t;
typedef struct
{
buffered_packet_t recv_buffer[MAX_BUFFER_SIZE];
uint16_t recv_buffer_head;
uint16_t recv_buffer_tail;
pthread_mutex_t tcp_recv_lock;
pthread_cond_t recv_buffer_empty;
pthread_cond_t recv_buffer_full;
} tcp_recv_data_t;
typedef struct
{
session_info__t session_info;
uint32_t client_next_seq_num; // 本端发送的下一个数据包的seq
uint32_t last_acked_seq_num; // (相对的)三次回应包的seq
uint32_t server_next_seq_num; // 对端下一个包的seq(即希望对方下一个包的数据是从第seq开始的)
uint16_t server_window_size;
uint16_t client_window_size;
uint16_t max_segment_size;
uint16_t cwindow_size;
uint16_t ssthresh;
pthread_cond_t send_window_low_thresh;
uint8_t syn_retries;
tcp_send_data_t sender_info;
tcp_recv_data_t recv_info;
pthread_mutex_t tcp_state_lock;
pthread_cond_t tcp_session_closed_notify;
uint8_t tcp_write_end_closed;
uint8_t tcp_read_end_closed;
pthread_t tcp_worker_threads[2];
tcp_state_machine_t tcp_current_state;
} tcp_state__t;
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr);
int send_data(char* buffer, int buffer_len);
int receive_data(char* buffer, int buffer_len);
int close_tcp();
#endif /* TCP_HANDLER_H_ */
Référence pour ce code : https://github.com/praveenkmurthy/Raw-Sockets