Mi informacion de contacto
Correo[email protected]
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
ambiente de laboratorio:
Máquina física de Windows: 192.168.1.4
WSL Ubuntu 20.04.6 LTS: 172.19.32.196
Un servidor http en Windows: HFS, probablemente se vea así:
El cliente es Ubuntu, el servidor es el servidor http (en lo sucesivo, servidor o servidor) y la IP del servidor se pasa al programa a través de parámetros.
El código fuente está al final.
El programa de funciones principal se divide en las siguientes partes:
1. Obtener parámetros y seleccione la tarjeta de red para la comunicación a través de la comunicación netlink (en realidad, Ubuntu solo tiene una tarjeta de red, la ip es 172.19.32.196) e inicialice la ip y el puerto del servidor y el cliente. Para obtener información sobre cómo seleccionar una tarjeta de red para la comunicación a través de la comunicación netlink, consulte el siguiente enlace:
Comunicación Netlink: lea la tabla de enrutamiento para obtener la IP de la tarjeta de red de comunicación
Parte del código:
...
// netlink通信
uint32_t src_address = getLocalIPAddress(inet_addr(dst));
...
src_addr.sin_family = AF_INET;
src_addr.sin_port = htons((uint16_t) getpid()); // 将当前进程ID作为源端口
src_addr.sin_addr = *(struct in_addr *) &src_address;
dst_addr.sin_family = AF_INET;
dst_addr.sin_port = htons(HTTP_PORT);
dst_addr.sin_addr.s_addr = inet_addr(dst);
...
2. Crea dos enchufes, envía socket y recibe socket, vincula al cliente (este paso es opcional, porque la tupla de cuatro en este ejemplo no ha cambiado) y establece los atributos del protocolo del socket.
Parte del código:
...
send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
sizeof(struct sockaddr_in)) < 0);
int one = 1;
setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one));
...
Cree sockets de envío y recepción:
AF_INET representa el conjunto de protocolos TCP/IP – IPv4;
SOCK_RAW indica que el tipo de socket es un socket sin formato;
El tercer parámetro es el parámetro de protocolo. IPPROTO_RAW significa que los desarrolladores pueden construir y analizar paquetes de datos IP por sí mismos. Usar esto como tipo de protocolo para enviar sockets requiere que encapsulemos los paquetes de datos salientes y calculemos la suma de verificación. , Lo que indica que el paquete de datos recibido es un paquete de datos TCP.
Vincular la IP y el puerto del cliente: Este paso no es necesario. Como se mencionó anteriormente, las direcciones IP y los puertos de ambas partes permanecen sin cambios.
Establecer propiedades del protocolo de socket:setsockopt establece las propiedades del socket receptor. El segundo parámetro es la opción del socket.
(1) Opciones de nivel de enchufe(SOCKET_SOL)
SO_REUSEADDR: permite la reutilización de direcciones locales.
SO_RCVBUF: establece el tamaño del búfer de recepción.
SO_SNDBUF: establece el tamaño del búfer de envío.
SO_BROADCAST: Permite enviar mensajes de difusión.
SO_KEEPALIVE: habilite el mecanismo de mantener vivo y verifique si la conexión es válida.
(2) Opción de capa IP (IPPROTO_IP)
IP_TTL: establece el tiempo de vida (TTL) de los datagramas IP.
IP_HDRINCL: indica a la aplicación que proporcione encabezados IP.
(3) Opción de capa TCP (IPPROTO_TCP)
TCP_NODELAY: deshabilita el algoritmo de Nagle para reducir el retraso.
TCP_MAXSEG: establece el tamaño máximo del segmento TCP.
En este ejemplo, la opción de socket está configurada en la opción de capa IP IP_HDRINCL de IPPROTO_IP, lo que indica que el paquete recibido contiene un encabezado IP.
connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr);
//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr)
{
int ret = 0;
// Initialize the TCP Session State with the given details
bzero(&tcp_state, sizeof(tcp_state__t));
tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE; // 初始化MSS
tcp_state.client_window_size = CLIENT_WINDOW_SIZE; // 初始化拥塞窗口
tcp_state.client_next_seq_num = STARTING_SEQUENCE; // 客户端下个包的seq
tcp_state.session_info.dst_addr = *dst_addr; // 目的地址
tcp_state.session_info.src_addr = *src_addr; // 源地址
tcp_state.session_info.recv_fd = recv_fd; // 接收句柄
tcp_state.session_info.send_fd = send_fd; // 发送句柄
tcp_state.syn_retries = 5; // 重传次数
tcp_state.cwindow_size = 1; // 拥塞窗口值
initialize_mutex(&tcp_state.tcp_state_lock);
initialize_mutex(&tcp_state.session_info.send_fd_lock);
tcp_flags_t flags = {0};
flags.ack = 1;
flags.syn = 1;
if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
|| ((ret = send_ack_segment(0)) < 0))
{
printf("Failed to set up TCP Connection!!");
ret = -1;
goto EXIT;
}
tcp_state.tcp_current_state = ESTABLISHED;
EXIT: return ret;
}
El proceso de apretón de manos es aproximadamente el siguiente:
Se puede observar que se divide en tres pasos:
1. Enviar paquete SYN, la función correspondiente es: send_syn();
create_packet() crea un paquete TCP. Esta función es muy importante y se implementa de manera muy inteligente. Al configurar el puntero de desplazamiento, se pueden encontrar el encabezado IP, el encabezado TCP y los datos. El indicador SYN de TCP debe establecerse en 1 y luego se construye el encabezado: build_packet_headers. La tarea específica es encapsular el encabezado TCP, calcular la suma de verificación de TCP, encapsular el encabezado IP y calcular la suma de verificación. En el diagrama de transición de estado de TCP, después de que el cliente envía el paquete SYN, su estado cambia de CERRADO a SYN_SENT, por lo que se debe configurar el estado de TCP: tcp_state.tcp_current_state = SYN_SENT, además de usar sendto; para enviar datos, para crear un temporizador de retransmisión, configure su función de devolución de llamada. Después de enviar el paquete SYN, si no se recibe respuesta dentro del tiempo de espera, el paquete SYN debe retransmitirse. Por lo tanto, el paquete enviado debe escribirse en el búfer de la cola circular de envío. Después del tiempo de espera, los datos guardados se extraen de la cola circular de envío y se reenvían. La cola circular no se tratará en este artículo.
2. Reciba paquetes SYN/ACK, la función correspondiente es recibir_syn_ack_segment(&flags);
Utilice la función recvfrom para recibir datos. Después de recibirlos, debe realizar una serie de pruebas, como verificar la suma de verificación de IP, verificar si los puertos de origen y destino y la IP son correctos, verificar la suma de verificación de TCP y verificar si el paquete. es un paquete de retransmisión. Luego, también debe configurar las direcciones de desplazamiento del encabezado IP, el encabezado TCP y los datos en el paquete de datos. Luego puede determinar si el indicador SYN y el indicador ACK del paquete recibido son 1 y si es un paquete RST. Después de completar estas tareas, aún necesita procesar este paquete SYN/ACK, incluida la configuración de la secuencia del siguiente paquete del servidor, la configuración de la secuencia del siguiente paquete del cliente, la actualización del valor de la ventana de recepción del servidor y la actualización del valor de la ventana de congestión y, comenzando desde la ventana de recepción, elimine este paquete de respuesta de la cola circular (porque ha sido procesado), libere el espacio creado para recibir este paquete y actualice el MSS.
3. Enviar paquete ACK, la función correspondiente es send_ack_segment(0);
El tercer paso es muy simple: envíe una respuesta, lo que indica que el protocolo de enlace de tres vías fue exitoso. El parámetro 0 significa que el indicador FIN es 0, es decir, el paquete es un paquete ACK. Establezca el estado de TCP en ESTABLECIDO.
Entonces, ¿cuál es el resultado? Ejecute el programa y use Wirehark para capturar el paquete:
Se puede ver que después de enviar el paquete SYN y recibir el SYN/ACK, el cliente de alguna manera envió otro paquete RST y luego envió el paquete ACK. El programa pareció ejecutarse exitosamente, pero en realidad se estableció el protocolo de enlace de tres vías. la conexión falló. .
¿Cuál es la razón para esto?
Este programa utiliza sockets sin formato para la comunicación, no llamadas al sistema. Cuando el cliente envía SYN/ACK, el sistema operativo primero recibe el paquete y luego verifica si hay un socket correspondiente (creado mediante llamadas al sistema) localmente. No hay nadie, entonces se enviará un paquete RST y luego el protocolo de enlace de tres vías no podrá establecer la conexión. .
Entonces, ¿cómo solucionarlo?
Debido a que este programa es principalmente para aprendizaje experimental, la solución puede ser usar iptables para descartar los paquetes RST enviados por la máquina. En este momento, el servidor no recibirá los paquetes RST enviados por el cliente y la conexión se podrá establecer con éxito. !
Script de shell implementado:
#!/bin/sh
if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi
./handshake "$@"
Primero verifique si el comando iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP se ejecuta. Si no, ejecútelo nuevamente.
Ver resultados:
¡éxito!
Finalmente, este programa solo implementa el protocolo de enlace de tres vías y no el saludo de cuatro vías.
Código fuente:
ejecutar.sh
#!/bin/sh
if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi
./handshake "$@"
Archivo Make
CFLAGS= -g -Werror -lrt -lpthread
CC=gcc
all:
$(CC) handshake.c routing_table.c tcp_handler.c $(CFLAGS) -o handshake
clean:
rm -rf handshake
Apretón de manos.c
#include "routing_table.h"
#include "tcp_handler.h"
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>
#define WRITE_BUFFER_SIZE 2048
#define RECV_BUFFER_LENGTH 32768
#define REQ_LENGTH 256
#define STRIP_LEADING_NEWLINE_CHAR(ptr)
while(*ptr == 'n')
ptr++;
#define STRIP_LEADING_WHITESPACES(ptr)
while(*ptr == ' ')
ptr++;
#define STRIP_TRAILING_CARRIAGE_RETURN(ptr) (ptr[strlen(ptr)-1] = '0')
int main(int argc, char** argv)
{
int send_sock_fd = -1, recv_sock_fd = -1;
struct sockaddr_in src_addr, dst_addr;
char dst[REQ_LENGTH] = {0};
if (argc != 2)
{
printf("Usage: ./rawhttpget ipn");
exit(1);
}
strncpy(dst, argv[1], REQ_LENGTH);
memset(&src_addr, 0, sizeof(struct sockaddr_in));
memset(&dst_addr, 0, sizeof(struct sockaddr_in));
// netlink通信
uint32_t src_address = getLocalIPAddress(inet_addr(dst));
src_addr.sin_family = AF_INET;
src_addr.sin_port = htons((uint16_t) getpid()); // 将当前进程ID作为源端口
src_addr.sin_addr = *(struct in_addr *) &src_address;
dst_addr.sin_family = AF_INET;
dst_addr.sin_port = htons(HTTP_PORT);
dst_addr.sin_addr.s_addr = inet_addr(dst);
send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); // IPPROTO_RAW:表示开发人员可以自己构造和解析 IP 数据包
if (send_sock_fd < 0)
{
printf("Error: Creation of Raw Socket failed: %s!!n", strerror(errno));
exit(1);
}
recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP); // IPPROTO_TCP表示接收TCP包
if (recv_sock_fd < 0)
{
printf("Error: Creation of Raw Socket failed: %s!!n", strerror(errno));
exit(1);
}
if (bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
sizeof(struct sockaddr_in)) < 0)
{
printf("Error: Unable to bind the receiving socket: %sn",
strerror(errno));
exit(1);
}
//IP_HDRINCL to tell the kernel that headers are included in the packet
int one = 1;
if (setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one)) < 0) // IP_HDRINCL:数据中包含IP头
{
perror("Error setting IP_HDRINCL");
exit(1);
}
char psrc_addr[256] = {0}, pdst_addr[256] = {0};
printf("Src Address: %s Destination Address: %sn",
inet_ntop(AF_INET, &src_addr.sin_addr.s_addr, psrc_addr, 256),
inet_ntop(AF_INET, &dst_addr.sin_addr.s_addr, pdst_addr, 256));
if (connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr) < 0)
{
printf("TCP Connection Failedn");
goto EXIT;
}
else
printf("TCP Connection Successfuln");
EXIT: close(send_sock_fd);
close(recv_sock_fd);
}
tabla_de_enrutamiento.c
#include <stdio.h>
#include <stdlib.h>
#include <bits/sockaddr.h>
#include <asm/types.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
#include <errno.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netdb.h>
#include <unistd.h>
#include <string.h>
#define BUFFER_LENGTH 8192
typedef struct rt_request
{
struct nlmsghdr nl;
struct rtmsg rt;
char payload[BUFFER_LENGTH];
} rt_request;
uint32_t fetch_interface_ip(uint32_t if_index)
{
int family;
struct ifreq ifreq;
char host[256] =
{ 0 }, if_name[256] =
{ 0 };
uint32_t src_addr;
int fd;
if_indextoname(if_index, if_name); // 根据索引值获取网络接口名,如eth0
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0)
{
perror("socket()");
exit(EXIT_FAILURE);
}
memset(&ifreq, 0, sizeof ifreq);
strncpy(ifreq.ifr_name, if_name, IFNAMSIZ);
if (ioctl(fd, SIOCGIFADDR, &ifreq) != 0) // 获取接口ip
{
/* perror(name); */
return -1; /* ignore */
}
switch (family = ifreq.ifr_addr.sa_family)
{
case AF_UNSPEC:
// return;
return -1; /* ignore */
case AF_INET:
case AF_INET6:
getnameinfo(&ifreq.ifr_addr, sizeof ifreq.ifr_addr, host, sizeof host,
0, 0, NI_NUMERICHOST);
break;
default:
sprintf(host, "unknown (family: %d)", family);
}
inet_pton(AF_INET, host, &src_addr);
close(fd);
return src_addr;
}
void formRequest(rt_request* req)
{
bzero(req, sizeof(req));
/*
struct nlmsghdr 为 netlink socket 自己的消息头,
这用于多路复用和多路分解 netlink 定义的所有协议类型以及其它一些控制,
netlink 的内核实现将利用这个消息头来多路复用和多路分解已经其它的一些控制,
因此它也被称为netlink 控制块。因此,应用在发送 netlink 消息时必须提供该消息头。
*/
req->nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
req->nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP; // NLM_F_REQUEST表示消息是一个请求
req->nl.nlmsg_type = RTM_GETROUTE; // nlmsg_type消息内容
// 填充rtmsg结构体,即路由表管理结构体,对于上面的RTM_GETROUTE操作来说,只需要定义下面两个内容
req->rt.rtm_family = AF_INET;
req->rt.rtm_table = RT_TABLE_MAIN;
}
void sendRequest(int sock_fd, struct sockaddr_nl *pa, rt_request* req)
{
struct msghdr msg; // sendmsg和recvmsg的参数,描述发送消息和接收消息的结构体
struct iovec iov; // iovec结构体用于描述一个数据缓冲区
int rtn;
bzero(pa, sizeof(pa));
pa->nl_family = AF_NETLINK;
bzero(&msg, sizeof(msg));
msg.msg_name = pa;
msg.msg_namelen = sizeof(*pa);
iov.iov_base = (void *) req;
iov.iov_len = req->nl.nlmsg_len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
while (1)
{
if ((rtn = sendmsg(sock_fd, &msg, 0)) < 0)
{
if (errno == EINTR)
continue;
else
{
printf("Error: Unable to send NetLink message:%sn",
strerror(errno));
exit(1);
}
}
break;
}
}
int receiveReply(int sock_fd, char* response_buffer)
{
char* p;
int nll, rtl, rtn;
struct nlmsghdr *nlp;
struct rtmsg *rtp;
bzero(response_buffer, BUFFER_LENGTH);
p = response_buffer;
nll = 0;
while (1)
{
if ((rtn = recv(sock_fd, p, BUFFER_LENGTH - nll, 0)) < 0)
{
if (errno == EINTR)
continue;
else
{
printf("Failed to read from NetLink Socket: %sn",
strerror(errno));
exit(1);
}
}
nlp = (struct nlmsghdr*) p;
if (nlp->nlmsg_type == NLMSG_DONE)
break;
p += rtn;
nll += rtn;
}
return nll;
}
uint32_t readReply(char *response, int nll, in_addr_t dst_address)
{
struct nlmsghdr *nlp = NULL;
struct rtmsg *rtp = NULL;
struct rtattr *rtap = NULL;
int rtl = 0, found_route = 0, default_route = 0;
uint32_t route_addr, net_mask;
uint32_t if_index = -1;
nlp = (struct nlmsghdr*) response;
for (; NLMSG_OK(nlp, nll); nlp = NLMSG_NEXT(nlp, nll)) // NLMSG_OK:检查nlh地址是否是一条完整的消息
{ // NLMSG_NEXT:当前消息地址,返回下一个消息地址
rtp = (struct rtmsg *) NLMSG_DATA(nlp); // NLMSG_DATA:从nlh首地址向后移动到data起始位置
if (rtp->rtm_table != RT_TABLE_MAIN)
continue;
// RTM_RTA:输入route message指针,返回route第一个属性首地址
rtap = (struct rtattr *) RTM_RTA(rtp); // rtattr结构体封装可选路由信息的通用结构,用于表示 Netlink 消息的属性
rtl = RTM_PAYLOAD(nlp); // RTM_PAYLOAD:即rtmsg层封装的数据长度,相当于TCP数据包去掉IP报头和TCP报头长度得到TCP数据部分长度
found_route = 0;
default_route = 1;
for (; RTA_OK(rtap, rtl); rtap = RTA_NEXT(rtap, rtl)) // RTA_OK:判断一个属性rta是否正确
{ // RTA_NEXT:先对attrlen减去rta属性内容的全部长度,然后返回下一个rtattr的首地址
switch (rtap->rta_type)
{
// destination IPv4 address
case RTA_DST:
default_route = 0;
route_addr = *((uint32_t*) RTA_DATA (rtap));
net_mask = 0xFFFFFFFF;
net_mask <<= (32 - rtp->rtm_dst_len);
net_mask = ntohl(net_mask);
if (route_addr == (dst_address & net_mask))
found_route = 1;
else if (route_addr == 0)
default_route = 1;
break;
// unique ID associated with the network
// interface
case RTA_OIF: // Output interface index
if (found_route || default_route)
if_index = *((uint32_t*) RTA_DATA (rtap));
break;
default:
break;
}
}
if (found_route)
break;
}
return if_index;
}
// Netlink分层模型及消息格式:https://onestraw.github.io/linux/netlink-message/
uint32_t getLocalIPAddress(in_addr_t dst_address)
{
int route_sock_fd = -1, res_len = 0;
struct sockaddr_nl sa, pa; // sa为消息接收者的 netlink 地址
uint32_t if_index;
rt_request req = {0};
char response_payload[BUFFER_LENGTH] = {0};
// Open Routing Socket
if ((route_sock_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) == -1)
{
printf("Error: Failed to open routing socket: %sn", strerror(errno));
exit(1);
}
bzero(&sa, sizeof(sa));
// nl_groups == 0 表示该消息为单播
sa.nl_family = AF_NETLINK;
sa.nl_pid = getpid(); // nl_pid表示接收消息者的进程ID
bind(route_sock_fd, (struct sockaddr*) &sa, sizeof(sa));
formRequest(&req); // 构造netlink消息
sendRequest(route_sock_fd, &pa, &req); // 发送消息
res_len = receiveReply(route_sock_fd, response_payload); // 接收消息
if_index = readReply(response_payload, res_len, dst_address); // 从接收的消息中获取if(network interface)
close(route_sock_fd);
return fetch_interface_ip(if_index); // 从if_index获取接口ip
}
tabla_de_enrutamiento.h
#include <sys/types.h>
#include <netinet/in.h>
#ifndef ROUTING_TABLE_H
#define ROUTING_TABLE_H
uint32_t getLocalIPAddress(in_addr_t dst_address);
#endif
controlador tcp_handler.c
#include "tcp_handler.h"
#define STARTING_SEQUENCE 1
#define TCP_WORD_LENGTH_WITH_NO_OPTIONS 5
#define HAS_TCP_OPTIONS(ptr) (ptr->doff > TCP_WORD_LENGTH_WITH_NO_OPTIONS)
#define TCP_OPTION_OFFSET(ptr) ((char*)ptr + (TCP_WORD_LENGTH_WITH_NO_OPTIONS * WORD_LENGTH))
#define TCP_OPTION_LENGTH(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH)
#define END_OF_TCP_OPTION_CHECK(ptr) ((*ptr) == 0)
#define TCP_OPTIONS_LEN(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH )
#define IS_NO_OPERATION(ptr) ((*ptr) == 1)
#define IS_MSS(ptr) ((*ptr) == 2)
#define OPTION_LENGTH(ptr) (*(ptr+1))
#define min(a,b)
({ __typeof__ (a) _a = (a);
__typeof__ (b) _b = (b);
_a < _b ? _a : _b; })
#define TCP_OPTION_DATA_OFFSET 2
#define IS_DUPLICATE_TCP_SEGMENT(tcph) (ntohl(tcph->seq) < tcp_state.server_next_seq_num)
#define IS_DUPLICATE_ACK(tcph) (tcph->ack && (tcph->ack_seq == tcp_state.last_acked_seq_num) )
#define WRAP_ROUND_BUFFER_SIZE(index)
({ __typeof__ (index) _index = (index);
( _index + 1) > MAX_BUFFER_SIZE ? 0 : (_index + 1); })
tcp_state__t tcp_state;
/*
Generic checksum calculation function
*/
static unsigned short csum(uint16_t *ptr, unsigned int nbytes)
{
uint32_t sum;
uint16_t answer;
sum = 0;
while (nbytes > 1)
{
sum += *ptr++;
nbytes -= 2; // 以16位的字为单位计算和
}
if (nbytes == 1) // 如果总长度为奇数个字节,则在最后增添一个位都为0的字节
{
sum += *(unsigned char*) ptr;
}
// 将32bit数据压缩成16bit数据,即将高16bit与低16bit相加,将进位加到低16位上,最后取反
sum = (sum >> 16) + (sum & 0xffff);
sum = sum + (sum >> 16);
answer = (short) ~sum;
return (answer);
}
static void calculate_tcp_checksum(struct tcphdr* tcph,
uint16_t tcp_payload_len, uint32_t src_addr, uint32_t dst_addr)
{
pseudo_header psh;
char* pseudogram;
uint16_t tcphdr_len = (tcph->doff * WORD_LENGTH); // tcph->doff:以32位字为单位表示TCP头长
// pseudoheader
bzero(&psh, sizeof(pseudo_header));
psh.source_address = src_addr;
psh.dest_address = dst_addr;
psh.protocol = IPPROTO_TCP;
psh.tcp_length = htons(tcphdr_len + tcp_payload_len);
int psize = sizeof(pseudo_header) + tcphdr_len + tcp_payload_len;
pseudogram = malloc(psize);
// TCP伪首部、TCP头、TCP数据
bzero(pseudogram, psize);
memcpy(pseudogram, &psh, sizeof(pseudo_header));
memcpy(pseudogram + sizeof(pseudo_header), tcph,
tcphdr_len + tcp_payload_len);
// 计算校验和
tcph->check = csum((uint16_t*) pseudogram, (unsigned int) psize);
free(pseudogram);
}
static int validate_ip_checksum(struct iphdr* iph)
{
int ret = -1;
uint16_t received_checksum = iph->check;
iph->check = 0;
if (received_checksum
== csum((uint16_t*) iph, (unsigned int) (iph->ihl * WORD_LENGTH)))
ret = 1;
return ret;
}
static int validate_tcp_checksum(struct tcphdr* tcph,
uint16_t tcp_payload_length)
{
int ret = -1;
uint16_t received_checksum = tcph->check;
tcph->check = 0;
calculate_tcp_checksum(tcph, tcp_payload_length,
*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr,
*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr);
if (received_checksum == tcph->check)
ret = 1;
if (ret < 0) {
printf("received_checksum:%d, tcph->check:%dn", received_checksum, tcph->check);
char psrc_addr[256] = {0}, pdst_addr[256] = {0};
printf("Src Address: %s Destination Address: %sn",
inet_ntop(AF_INET, &tcp_state.session_info.src_addr.sin_addr.s_addr, psrc_addr, 256),
inet_ntop(AF_INET, &tcp_state.session_info.dst_addr.sin_addr.s_addr, pdst_addr, 256));
}
return ret;
}
static packet_t* create_packet()
{
packet_t* packet = malloc(sizeof(packet_t));
// send tcp syn
bzero(packet, sizeof(packet_t));
packet->offset[IP_OFFSET] = packet->payload;
packet->offset[TCP_OFFSET] = packet->payload + sizeof(struct iphdr);
packet->offset[DATA_OFFSET] = packet->payload + sizeof(struct tcphdr)
+ sizeof(struct iphdr);
packet->retransmit_timer_id = NULL;
return packet;
}
static void adjust_layer_offset(packet_t* packet)
{
struct tcphdr *tcph;
struct iphdr *iph;
iph = (struct iphdr *) packet->payload;
tcph = (struct tcphdr *) (packet->payload + (iph->ihl * WORD_LENGTH));
packet->offset[TCP_OFFSET] = (char*) tcph;
packet->offset[DATA_OFFSET] = (char*) (packet->offset[TCP_OFFSET]
+ (tcph->doff * WORD_LENGTH));
}
static void destroy_packet(packet_t* packet)
{
if (packet->retransmit_timer_id != NULL)
timer_delete(packet->retransmit_timer_id);
free(packet);
}
static void remove_acked_entries(uint32_t next_expected_seq)
{
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
while ((tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet_seq
< next_expected_seq)
&& !(tcp_state.sender_info.retx_buffer_head
== tcp_state.sender_info.retx_buffer_tail))
{
destroy_packet(
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet);
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet = NULL;
tcp_state.sender_info.retx_buffer_head =
WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_head);
}
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
static void reset_packet_retransmission_timer(timer_t* timer_id,
uint16_t timeInSecs)
{
struct itimerspec timer_value = {0};
timer_value.it_interval.tv_sec = timeInSecs;
timer_value.it_value.tv_sec = timeInSecs;
if (timer_settime(*timer_id, 0, &timer_value, NULL) < 0)
{
printf("Failed to set time!!");
timer_delete(*timer_id);
*timer_id = NULL;
}
}
static void build_ip_header(struct iphdr* iph, uint16_t ip_payload_len)
{
iph->daddr = *(uint32_t*) &tcp_state.session_info.dst_addr.sin_addr.s_addr;
iph->saddr = *(uint32_t*) &tcp_state.session_info.src_addr.sin_addr.s_addr;
iph->ihl = 5;
iph->protocol = IPPROTO_TCP;
iph->ttl = 255;
iph->version = 4;
iph->tot_len = sizeof(struct iphdr) + ip_payload_len;
iph->check = csum((unsigned short*) iph, sizeof(struct iphdr));
}
static void build_tcp_header(struct tcphdr* tcph, tcp_flags_t* flags,
uint16_t payload_len)
{
tcph->dest = *(uint16_t*) &tcp_state.session_info.dst_addr.sin_port;
tcph->source = *(uint16_t*) &tcp_state.session_info.src_addr.sin_port;
tcph->window = htons(tcp_state.client_window_size);
tcph->seq = htonl(tcp_state.client_next_seq_num);
tcp_state.client_next_seq_num +=
(flags->syn || flags->fin) ? 1 : payload_len;
tcph->doff = (flags->syn) ? 6 : 5;
tcph->syn = flags->syn;
tcph->ack = flags->ack;
tcph->fin = flags->fin;
tcph->psh = flags->psh;
tcph->ack_seq = htonl(tcp_state.server_next_seq_num);
if (flags->syn)
{
char* tcp_options = ((char *) tcph) + sizeof(struct tcphdr);
tcp_options_t mss = {0};
mss.option_type = 2;
mss.option_len = 4;
mss.option_value = htons(1460);
memcpy(tcp_options++, &mss.option_type, sizeof(char));
memcpy(tcp_options++, &mss.option_len, sizeof(char));
memcpy(tcp_options, &mss.option_value, sizeof(uint16_t));
}
}
static void build_packet_headers(packet_t* packet, int payload_len,
tcp_flags_t* flags)
{
struct tcphdr* tcph = (struct tcphdr*) packet->offset[TCP_OFFSET];
struct iphdr* iph = (struct iphdr*) packet->offset[IP_OFFSET];
build_tcp_header(tcph, flags, payload_len);
calculate_tcp_checksum(tcph, payload_len,
*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr,
*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr);
build_ip_header(iph, ((tcph->doff * WORD_LENGTH) + payload_len));
}
static int send_packet(void *buffer, int total_packet_len)
{
int ret = -1;
pthread_mutex_lock(&tcp_state.session_info.send_fd_lock);
while (total_packet_len > 0)
{
//Send the packet
if ((ret = sendto(tcp_state.session_info.send_fd, buffer,
total_packet_len, 0,
(struct sockaddr *) &tcp_state.session_info.dst_addr,
sizeof(struct sockaddr_in))) < 0)
{
if (errno == EINTR)
{
printf("Sendto() Interrupted!!");
continue;
}
else
{
perror("sendto failed");
goto EXIT;
}
}
if (ret == total_packet_len)
break;
total_packet_len -= ret;
buffer += ret;
}
EXIT: pthread_mutex_unlock(&tcp_state.session_info.send_fd_lock);
return ret;
}
static void handle_packet_retransmission()
{
packet_t* packet = NULL;
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
int index = tcp_state.sender_info.retx_buffer_head;
while (index != tcp_state.sender_info.retx_buffer_tail)
{
packet = tcp_state.sender_info.retx_buffer[index].packet;
// 重启重传定时器
reset_packet_retransmission_timer(&packet->retransmit_timer_id, 0);
if (send_packet(packet->payload, packet->payload_len) < 0)
printf("Failed to retransmit packet!!");
reset_packet_retransmission_timer(&packet->retransmit_timer_id, 60);
index++;
}
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
static int send_ack_segment(uint8_t fin)
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags =
{ 0 };
flags.ack = 1;
flags.fin = fin;
build_packet_headers(packet, 0, &flags);
if ((ret = send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
{
printf("Send error!! Exiting.. ");
}
EXIT: destroy_packet(packet);
return ret;
}
static int receive_packet(packet_t *packet)
{
int ret = -1;
while (1)
{
if ((ret = recvfrom(tcp_state.session_info.recv_fd, &packet->payload,
sizeof(packet->payload), 0,
NULL, NULL)) < 0)
{
if (errno == EINTR)
continue;
else
{
perror("recv failed");
return ret;
}
}
//Data received successfully
struct iphdr *iph = (struct iphdr *) &packet->payload;
// printf("packet->payload:%sn", packet->payload);
if (validate_ip_checksum(iph) < 0)
{
printf("IP Checksum validation failed!! Packet dropped!!n");
continue;
}
uint16_t iphdr_len = iph->ihl * WORD_LENGTH;
struct tcphdr *tcph = (struct tcphdr *) ((char*) iph + iphdr_len);
uint16_t tcphdr_len = tcph->doff * WORD_LENGTH;
if (iph->saddr != tcp_state.session_info.dst_addr.sin_addr.s_addr
&& tcph->dest != tcp_state.session_info.src_port
&& tcph->source != tcp_state.session_info.dst_port)
continue;
if (validate_tcp_checksum(tcph,
(ntohs(iph->tot_len) - iphdr_len - tcphdr_len)) < 0)
{
printf("TCP Checksum validation failed!! Packet dropped!!n");
continue;
}
if ( IS_DUPLICATE_ACK(tcph))
{
handle_packet_retransmission();
continue;
}
else if ( IS_DUPLICATE_TCP_SEGMENT(tcph))
{
send_ack_segment(0);
continue;
}
adjust_layer_offset(packet);
packet->payload_len = (ntohs(iph->tot_len) - iphdr_len - tcphdr_len);
// printf("packet->payload_len:%dn", packet->payload_len);
break;
}
return ret;
}
static void process_ack(struct tcphdr *tcph, uint16_t payload_len)
{
tcp_state.server_next_seq_num = (ntohl(tcph->seq) + payload_len); // 当前收到的包的序号是seq,长度是payload_len,那么下一个数据包的seq就是ntohl(tcph->seq) + payload_len
tcp_state.last_acked_seq_num = (ntohl(tcph->ack_seq)); // 下一个发包的seq
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.server_window_size = ntohs(tcph->window); // 更新对端接收窗口值
tcp_state.cwindow_size =
(++tcp_state.cwindow_size > MAX_CONGESTION_WINDOW_SIZE) ?
MAX_CONGESTION_WINDOW_SIZE : tcp_state.cwindow_size;
pthread_cond_signal(&tcp_state.send_window_low_thresh);
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
remove_acked_entries(ntohl(tcph->ack_seq)); // 删除已经收到回应的数据包
// 更新tcp_state.max_segment_size
if (HAS_TCP_OPTIONS(tcph))
{
char* tcp_options_offset = (char*) TCP_OPTION_OFFSET(tcph);
uint16_t total_options_len = TCP_OPTIONS_LEN(tcph);
while (!END_OF_TCP_OPTION_CHECK(tcp_options_offset)
&& total_options_len > 0)
{
if ( IS_NO_OPERATION(tcp_options_offset))
{
tcp_options_offset++;
total_options_len--;
}
else if ( IS_MSS(tcp_options_offset))
{
tcp_state.max_segment_size =
min(tcp_state.max_segment_size,
*((uint16_t*)(tcp_options_offset+TCP_OPTION_DATA_OFFSET)));
tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
total_options_len -= OPTION_LENGTH(tcp_options_offset);
}
else
{
tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
total_options_len -= OPTION_LENGTH(tcp_options_offset);
}
}
}
}
static void retransmission_timer_handler(union sigval value)
{
int buffer_index = value.sival_int;
packet_t* packet = NULL;
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.cwindow_size = 1;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
if (tcp_state.sender_info.retx_buffer[buffer_index].packet == NULL
|| buffer_index < tcp_state.sender_info.retx_buffer_head)
goto EXIT;
packet = tcp_state.sender_info.retx_buffer[buffer_index].packet;
if (send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len) < 0)
{
printf("Failed to retransmit packet!!n");
}
EXIT: pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}
void create_retransmission_timer(timer_t* timer, int send_buffer_index)
{
union sigval val;
struct sigevent sev;
struct itimerspec timer_value = {0};
memset(&val, 0, sizeof(val));
memset(&sev, 0, sizeof(sev));
val.sival_int = send_buffer_index;
// SIGEV_THREAD:当定时器到期,内核会(在此进程内)以sigev_notification_attributes为线程属性创建一个线程,
// 并且让它执行sigev_notify_function,传入sigev_value作为为一个参数。
sev.sigev_notify = SIGEV_THREAD;
sev.sigev_value = val;
sev.sigev_notify_function = retransmission_timer_handler; // 定时器到期,重传数据包(即超时重传)
// 创建定时器
// CLOCK_MONOTONIC:从系统启动这一刻起开始计时,不受系统时间被用户改变的影响
if (timer_create(CLOCK_MONOTONIC, &sev, timer) < 0)
{
printf("Failed to create the retransmission timer!!");
*timer = NULL;
goto EXIT;
}
timer_value.it_interval.tv_sec = 60; // it_interval:定时时间 60s
timer_value.it_value.tv_sec = 60; // it_value:单次启动时间 60s
// 设置定时器
if (timer_settime(*timer, 0, &timer_value, NULL) < 0)
{
printf("Failed to set time!!");
timer_delete(*timer);
*timer = NULL;
}
EXIT: return;
}
static int send_tcp_segment(packet_t* packet)
{
int ret = 0;
if ((ret = send_packet(&packet->payload,
((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
{
printf("Send error!! Exiting.. ");
goto EXIT;
}
// 创建重传定时器,超时重传数据包 NULL 0
create_retransmission_timer(&packet->retransmit_timer_id,
tcp_state.sender_info.retx_buffer_tail);
pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
// 数据包写入发送循环队列
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet_seq =
((struct tcphdr*) &packet->offset[TCP_OFFSET])->seq;
tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet =
packet;
// 发送尾指针加一,指向下一个空队列空间
tcp_state.sender_info.retx_buffer_tail =
WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_tail);
pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
EXIT: return ret;
}
static int send_syn()
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags = {0};
flags.syn = 1;
build_packet_headers(packet, 0, &flags);
tcp_state.tcp_current_state = SYN_SENT;
return send_tcp_segment(packet);
}
static int receive_syn_ack_segment(tcp_flags_t* flags)
{
int ret = -1;
packet_t* packet = create_packet();
struct tcphdr *tcph;
while (1)
{
if ((ret = receive_packet(packet)) < 0)
{
printf("Receive error!! Exiting.. ");
goto EXIT;
}
tcph = (struct tcphdr *) packet->offset[TCP_OFFSET];
if (tcph->ack == flags->ack && tcph->syn == flags->syn)
break;
if (tcph->rst || !tcp_state.syn_retries)
{
ret = -1;
goto EXIT;
}
}
process_ack(tcph, 1);
EXIT: destroy_packet(packet);
return ret;
}
static int initialize_mutex(pthread_mutex_t* mutex)
{
int ret = -1;
pthread_mutexattr_t mutex_attr;
if ((ret = pthread_mutexattr_init(&mutex_attr)) != 0)
{
printf("Failed to initialize mutex attributen");
ret = -1;
goto EXIT;
}
if ((ret = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_RECURSIVE))
!= 0)
{
printf("Failed to set mutex attributen");
ret = -1;
goto EXIT;
}
if ((ret = pthread_mutex_init(mutex, &mutex_attr)) != 0)
{
printf("Failed to initialize mutex!!n");
ret = -1;
}
EXIT: return ret;
}
static void get_wait_time(struct timespec* timeToWait, uint16_t timeInSeconds)
{
struct timeval now;
int rt;
gettimeofday(&now, NULL);
timeToWait->tv_sec = now.tv_sec + timeInSeconds;
timeToWait->tv_nsec = 0;
}
//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr)
{
int ret = 0;
// Initialize the TCP Session State with the given details
bzero(&tcp_state, sizeof(tcp_state__t));
tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE; // 初始化MSS
tcp_state.client_window_size = CLIENT_WINDOW_SIZE; // 初始化拥塞窗口
tcp_state.client_next_seq_num = STARTING_SEQUENCE; // 客户端下个包的seq
tcp_state.session_info.dst_addr = *dst_addr; // 目的地址
tcp_state.session_info.src_addr = *src_addr; // 源地址
tcp_state.session_info.recv_fd = recv_fd; // 接收句柄
tcp_state.session_info.send_fd = send_fd; // 发送句柄
tcp_state.syn_retries = 5; // 重传次数
tcp_state.cwindow_size = 1; // 拥塞窗口值
initialize_mutex(&tcp_state.tcp_state_lock);
initialize_mutex(&tcp_state.session_info.send_fd_lock);
tcp_flags_t flags = {0};
flags.ack = 1;
flags.syn = 1;
if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
|| ((ret = send_ack_segment(0)) < 0))
{
printf("Failed to set up TCP Connection!!");
ret = -1;
goto EXIT;
}
tcp_state.tcp_current_state = ESTABLISHED;
EXIT: return ret;
}
static int send_fin()
{
int ret = -1;
packet_t* packet = create_packet();
tcp_flags_t flags = {0};
flags.fin = 1;
flags.ack = 1;
build_packet_headers(packet, 0, &flags);
return send_tcp_segment(packet);
}
int close_tcp()
{
int ret = -1;
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (!((tcp_state.tcp_current_state & ESTABLISHED)
|| (tcp_state.tcp_current_state & CLOSE_WAIT)))
{
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
goto EXIT;
}
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
if ((ret = send_fin()) < 0)
goto EXIT;
struct timespec timeToWait;
get_wait_time(&timeToWait, 10);
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (tcp_state.tcp_current_state & ESTABLISHED)
tcp_state.tcp_current_state = FIN_WAIT_1;
else
tcp_state.tcp_current_state = LAST_ACK;
tcp_state.tcp_write_end_closed = 1;
pthread_cond_timedwait(&tcp_state.tcp_session_closed_notify,
&tcp_state.tcp_state_lock, &timeToWait);
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
EXIT: return ret;
}
static void release_and_update_recv_buffer(packet_t* packet)
{
pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);
tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet =
NULL;
tcp_state.recv_info.recv_buffer_head =
WRAP_ROUND_BUFFER_SIZE(tcp_state.recv_info.recv_buffer_head);
destroy_packet(packet);
pthread_cond_signal(&tcp_state.recv_info.recv_buffer_full);
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
}
int receive_data(char* buffer, int buffer_len)
{
int total_bytes_read = 0, ret = -1;
packet_t* packet = NULL;
struct timespec timeToWait;
while (buffer_len > 0)
{
get_wait_time(&timeToWait, 5);
pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);
if (tcp_state.recv_info.recv_buffer_head
== tcp_state.recv_info.recv_buffer_tail)
{
if (total_bytes_read > 0)
{
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
break;
}
else
{
if ((ret = pthread_cond_timedwait(
&tcp_state.recv_info.recv_buffer_empty,
&tcp_state.recv_info.tcp_recv_lock, &timeToWait)) != 0)
{
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
if (ret == ETIMEDOUT)
{
pthread_mutex_lock(&tcp_state.tcp_state_lock);
if (tcp_state.tcp_read_end_closed)
{
printf("TCP Server Closed!!n");
total_bytes_read = -1;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
break;
}
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
continue;
}
else
break;
}
}
}
packet =
tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet;
pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
int copied_bytes = 0;
if (packet->payload_len > buffer_len)
{
printf("CHUNKED TRANSFER: %d:%dn", packet->payload_len,
buffer_len);
memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
buffer_len);
packet->offset[DATA_OFFSET] += buffer_len;
packet->payload_len -= buffer_len;
total_bytes_read += buffer_len;
copied_bytes = buffer_len;
buffer_len = 0;
}
else
{
memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
packet->payload_len);
buffer_len -= packet->payload_len;
total_bytes_read += packet->payload_len;
copied_bytes = packet->payload_len;
release_and_update_recv_buffer(packet);
}
pthread_mutex_lock(&tcp_state.tcp_state_lock);
tcp_state.client_window_size += copied_bytes;
tcp_state.client_window_size =
(tcp_state.client_window_size > CLIENT_WINDOW_SIZE) ?
CLIENT_WINDOW_SIZE : tcp_state.client_window_size;
pthread_mutex_unlock(&tcp_state.tcp_state_lock);
}
return total_bytes_read;
}
controlador tcp_handler.h
#ifndef TCP_HANDLER_H_
#define TCP_HANDLER_H_
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <string.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <pthread.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#define TOTAL_LAYERS 2
#define IP_LAYER_OFFSET 0
#define TCP_LAYER_OFFSET 1
#define PAYLOAD_OFFSET 2
#define CLIENT_PORT 35555
#define HTTP_PORT 80
#define RTAX_MAX 8
#define IP_OFFSET 0
#define TCP_OFFSET 1
#define DATA_OFFSET 2
#define MAX_BUFFER_SIZE 400
#define MAX_CLIENT_SEGMENT_SIZE 1460
// #define CLIENT_WINDOW_SIZE 16384
#define CLIENT_WINDOW_SIZE 12000
#define WORD_LENGTH 4
// #define PACKET_MAX_SIZE 16384
#define PACKET_MAX_SIZE 12000
#define MAX_PAYLOAD_LEN (PACKET_MAX_SIZE - sizeof(struct iphdr) - sizeof(struct tcphdr))
#define MAX_CONGESTION_WINDOW_SIZE 1000
typedef enum
{
SYN_SENT = 1,
ESTABLISHED = 2,
FIN_WAIT_1 = 4,
FIN_WAIT_2 = 8,
CLOSE_WAIT = 16,
CLOSING = 32,
LAST_ACK = 64,
CLOSED = 128
} tcp_state_machine_t;
typedef struct
{
uint8_t syn :1;
uint8_t ack :1;
uint8_t fin :1;
uint8_t psh :1;
} tcp_flags_t;
typedef struct
{
uint8_t option_type;
uint8_t option_len;
uint16_t option_value;
} tcp_options_t;
typedef struct
{
char payload[PACKET_MAX_SIZE];
char* offset[TOTAL_LAYERS + 1];
timer_t retransmit_timer_id;
uint16_t payload_len;
} packet_t;
typedef struct
{
packet_t* packet;
uint32_t packet_seq;
} buffered_packet_t;
// TCP 伪首部
typedef struct
{
u_int32_t source_address;
u_int32_t dest_address;
u_int8_t placeholder;
u_int8_t protocol;
u_int16_t tcp_length;
} pseudo_header;
typedef struct
{
struct sockaddr_in src_addr;
struct sockaddr_in dst_addr;
uint16_t src_port;
uint16_t dst_port;
int send_fd;
int recv_fd;
pthread_mutex_t send_fd_lock;
} session_info__t;
typedef struct
{
buffered_packet_t send_buffer[MAX_BUFFER_SIZE];
uint16_t send_buffer_head;
uint16_t send_buffer_tail;
buffered_packet_t retx_buffer[MAX_BUFFER_SIZE];
uint16_t retx_buffer_head;
uint16_t retx_buffer_tail;
pthread_mutex_t tcp_send_lock;
pthread_mutex_t tcp_retx_lock;
pthread_cond_t send_buffer_empty;
pthread_cond_t send_buffer_full;
} tcp_send_data_t;
typedef struct
{
buffered_packet_t recv_buffer[MAX_BUFFER_SIZE];
uint16_t recv_buffer_head;
uint16_t recv_buffer_tail;
pthread_mutex_t tcp_recv_lock;
pthread_cond_t recv_buffer_empty;
pthread_cond_t recv_buffer_full;
} tcp_recv_data_t;
typedef struct
{
session_info__t session_info;
uint32_t client_next_seq_num; // 本端发送的下一个数据包的seq
uint32_t last_acked_seq_num; // (相对的)三次回应包的seq
uint32_t server_next_seq_num; // 对端下一个包的seq(即希望对方下一个包的数据是从第seq开始的)
uint16_t server_window_size;
uint16_t client_window_size;
uint16_t max_segment_size;
uint16_t cwindow_size;
uint16_t ssthresh;
pthread_cond_t send_window_low_thresh;
uint8_t syn_retries;
tcp_send_data_t sender_info;
tcp_recv_data_t recv_info;
pthread_mutex_t tcp_state_lock;
pthread_cond_t tcp_session_closed_notify;
uint8_t tcp_write_end_closed;
uint8_t tcp_read_end_closed;
pthread_t tcp_worker_threads[2];
tcp_state_machine_t tcp_current_state;
} tcp_state__t;
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
struct sockaddr_in* src_addr);
int send_data(char* buffer, int buffer_len);
int receive_data(char* buffer, int buffer_len);
int close_tcp();
#endif /* TCP_HANDLER_H_ */
Referencia para este código: https://github.com/praveenkmurthy/Raw-Sockets