Berbagi teknologi

04: pengatur waktu

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina


Saat pengatur waktu digunakan, pengatur waktu bergantung pada rangkaian osilator internal untuk menghitung. Ketika dikonfigurasi untuk penggunaan pengatur waktu, nilai memori penghitung bertambah 1 setiap siklus mesin.

1. Cara menyetel pengatur waktu

1. Osilator kristal (osilator kristal) memancarkan pulsa dan mencatat jumlah pulsa untuk pengaturan waktu.
2. Frekuensi pulsa adalah frekuensi clock, dan kebalikan dari frekuensi ini adalah periode osilasi (siklus jam), yang juga merupakan satuan waktu terkecil dalam komputer.
Masukkan deskripsi gambar di sini

Seperti terlihat pada gambar: frekuensi osilator kristal adalah 11,0592MHz, maka siklus clocknya adalah 1/11,0592MHz (detik), artinya satu siklus pulsa membutuhkan waktu beberapa detik.

3. Siklus mesin adalah siklus CPU, dan waktu yang diperlukan untuk operasi dasar disebut siklus mesin. Umumnya, satu siklus mesin terdiri dari beberapa siklus clock. Biasanya 12 kali/6 kali.
Masukkan deskripsi gambar di sini

Masukkan deskripsi gambar di sini

  • Berapa lama waktu yang telah berlalu sejak penambahan 1?
    Jika frekuensi osilator kristal 11.0592MHz sama dengan 11059.2KHz = 11059200Hz
    Siklus mesin = 12 x siklus jam = 12 x (1/frekuensi jam) detik = 12 / frekuensi jam detik = 12 / 11059200 detik = 12.000.000 / 11059200 mikrodetik = 1,085 (us)
    Artinya: bila menggunakan kelipatan 12, penghitung akan memberi +1 setiap 1,085us

2. Bagaimana cara menerapkan penghitungan?

Dengan mengkonfigurasi register yang relevan: Gambar berikut menunjukkan register pengatur waktu yang relevan.
Masukkan deskripsi gambar di sini

  • Seperti terlihat pada gambar, ada 2 register: yang pertama TCON dan yang kedua TCOM, keduanya masing-masing 8 bit.
  • Seperti yang ditunjukkan pada gambar, ada dua jenis pengatur waktu: yang pertama adalah pengatur waktu bit T0, dan yang kedua adalah pengatur waktu T1. Keduanya masing-masing 16 bit.

2.1. Daftar kendali TCON

Masukkan deskripsi gambar di sini

TF0:定时器T0溢出中断标志,当定时器0开始计数时,计数到规定的时间时,定时器产生了溢出。TF0自动由0变位1(由硬件置1)。
如果不用中断,需要手动清零。

TR0:定时器T0的控制位,当为1时,定时器T0才能计数,相当于T0的开关(由软件控制)。
  • 1
  • 2
  • 3
  • 4

2.2. Mode kerja daftarkan TCOM

Masukkan deskripsi gambar di sini

GATE:门控制位,当GATE=0时:计数条件只有TR1一个(TR1=1就计数,TR1=0就不计数)。
			   当GATE=1时:是否计数不仅取决于TR1还取决于INT1引脚
C/T :时钟输入选择为,为1时,时钟从外部引脚P3.5口输入;为0时,时钟从内部输入
M1      M0
0        0        :13位定时器,使用高8位和低5位
0        1        :16位定时器,全用
1        0        :8位自动重装载定时器,当溢出时将TH1存放的值自动重装入TL1.
1        1        :定时器无效
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2.3

Masukkan deskripsi gambar di sini

Timer T0 memiliki total 16 bit, terbagi menjadi TH0 8 bit tinggi dan TL0 8 bit rendah. Oleh karena itu, total 2^16 angka (65536) dapat dihitung, dan siklus penghitungan 1 angka adalah 1,085us, jadi defaultnya adalah mulai menghitung dari 0, dan waktu kumulatifnya sekitar 71ms.

3. Kasus: Gunakan pengatur waktu T0 untuk mengontrol LED agar hidup dan mati dengan interval 1 detik.

Kode ①:

#include <REGX52.H>

sbit LED1 = P3^7;
void main(void)
{
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	
/*1、选择定时器T0,并配置为16位定时器*/
	TMOD =0x01;							// 0000 0001
	
/*
	2、定一个10ms的时间,数1下需要1.085us
	10ms需要数则需要数9216下,那从65536-9126=56320
	从56320这里开始数,数9216下就到了65536。当超过了
	65536时就报表了,控制寄存器TCON的TF0由0变为1	
*/
	TL0 = 0x00; //0000 0000
	TH0 = 0xDC;//1101 1100
	
/*3、打开定时器T0*/
	TR0 = 1;
	
	TF0 = 0;//先个溢出标志清零
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

【Catatan】

  • Setelah setiap laporan, pengatur waktu harus diberi nilai awal yang baru.
  • cnt bertambah 1 setiap 10 milidetik. Jika cnt bertambah menjadi 100, berarti 1 detik telah berlalu.

Pengoptimalan kode②:

#include <REGX52.H>

sbit LED1 = P3^7;

void Timer0_Init_10ms(void)//定时器初始化10ms
{
	TMOD =0x01;							
	
	TL0 = 0x00; //0000 0000
	TH0 = 0xDC;//1101 1100
	
	TR0 = 1;
	TF0 = 0;
}

void main(void)
{ 
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	Timer0_Init_10ms();
	
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
			
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

Enkapsulasi inisialisasi pengatur waktu T0 ke dalam suatu fungsi dan panggil secara langsung bila diperlukan.
Namun menggunakan TMOD = 0x01;

假如定时器T1正在使用,且为16位定时器。则TMOD的高4位应该为:0x1(0001)
而我们使用定时器T0时TMOD初始为0x01,则TMOD的高4位为0x0(0000),则把定时器T1变为一个13位定时器了。所以还需要改进
  • 1
  • 2

Pengoptimalan kode ③:

#include <REGX52.H>

sbit LED1 = P3^7;

void Timer0_Init_10ms(void)		//10毫秒@11.0592MHz
{
	//AUXR &= 0x7F;		//定时器时钟12T模式
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;		//设置定时器模式
	TL0 = 0x00;		//设置定时初值
	TH0 = 0xDC;		//设置定时初值
	TF0 = 0;		//清除TF0标志
	TR0 = 1;		//定时器0开始计时
}

void main(void)
{ 
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	Timer0_Init_10ms();
	
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
			
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

Kami menemukan bahwa inisialisasi TMOD adalah:

TMOD &= 0xF0;		//设置定时器模式
TMOD |= 0x01;		//设置定时器模式
  • 1
  • 2

Apa manfaat inisialisasi seperti ini?

假如定时器T1正在使用,且为16位定时器。则TMOD的高4位应该为:0x1(0001),而要使用定时器T0,且也为16位定时器,则TMOD =  0x11;
TMOD &= 0xF0;表示TMOD = TMOD & 0xf0,则与出来的TMOD = 0x10,由此可见,这一步就是让TMOD的高4位不变,低4位清零。
TMOD |= 0x01;表示TMOD = TMOD | 0x01,则或出来的TMOD = 0x11,由此可见,这一步就是让TMOD的高4位不变,低4位初始化。
通过这样初始化,既保证了TMOD的高4位不变(不改变定时器T1的初始化),由对低4位进行了改变(对定时器T0初始化)。
当然:也可以直让TMOD = 0x11;
  • 1
  • 2
  • 3
  • 4
  • 5