Compartilhamento de tecnologia

04: Temporizador

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina


Quando o temporizador é usado, ele depende do circuito oscilador interno para contar. Quando configurado para uso de timer, o valor da memória do contador é incrementado em 1 a cada ciclo da máquina.

1. Como definir o cronômetro

1. O oscilador de cristal (oscilador de cristal) emite pulsos e registra o número de pulsos para temporização.
2. A frequência do pulso é a frequência do clock, e o recíproco dessa frequência é o período de oscilação (ciclo do clock), que também é a menor unidade de tempo no computador.
Insira a descrição da imagem aqui

Conforme mostrado na figura: a frequência do oscilador de cristal é 11,0592 MHz, então seu ciclo de clock é 1/11,0592 MHz (segundo), ou seja, um ciclo de pulso leva tantos segundos.

3. O ciclo da máquina é o ciclo da CPU, e o tempo necessário para uma operação básica é chamado de ciclo da máquina. Geralmente, um ciclo de máquina consiste em vários ciclos de clock. Normalmente é 12 vezes/6 vezes.
Insira a descrição da imagem aqui

Insira a descrição da imagem aqui

  • Quanto tempo se passou desde a adição de 1?
    Quando a frequência do oscilador de cristal é 11,0592 MHz, é igual a 11059,2 KHz = 11059200 Hz
    Ciclos de máquina = 12 x ciclos de relógio = 12 x (1/frequência de relógio) segundos = 12 / segundos de frequência de relógio = 12/11059200 segundos = 12.000.000/11059200 microssegundos = 1,085 (us)
    Ou seja: ao usar um múltiplo de 12, o contador irá +1 a cada 1,085us

2. Como implementar a contagem?

Configurando os registros relevantes: A figura a seguir mostra os registros relevantes do temporizador.
Insira a descrição da imagem aqui

  • Conforme mostrado na figura, existem 2 registros: o primeiro é TCON e o segundo é TCOM, ambos com 8 bits cada.
  • Conforme mostrado na figura, existem dois tipos de temporizadores: o primeiro é o temporizador de bit T0 e o segundo é o temporizador T1. Ambos têm 16 bits cada.

2.1. Registro de controle TCON

Insira a descrição da imagem aqui

TF0:定时器T0溢出中断标志,当定时器0开始计数时,计数到规定的时间时,定时器产生了溢出。TF0自动由0变位1(由硬件置1)。
如果不用中断,需要手动清零。

TR0:定时器T0的控制位,当为1时,定时器T0才能计数,相当于T0的开关(由软件控制)。
  • 1
  • 2
  • 3
  • 4

2.2.Registro de modo de trabalho TCOM

Insira a descrição da imagem aqui

GATE:门控制位,当GATE=0时:计数条件只有TR1一个(TR1=1就计数,TR1=0就不计数)。
			   当GATE=1时:是否计数不仅取决于TR1还取决于INT1引脚
C/T :时钟输入选择为,为1时,时钟从外部引脚P3.5口输入;为0时,时钟从内部输入
M1      M0
0        0        :13位定时器,使用高8位和低5位
0        1        :16位定时器,全用
1        0        :8位自动重装载定时器,当溢出时将TH1存放的值自动重装入TL1.
1        1        :定时器无效
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2.3. Temporizador T0

Insira a descrição da imagem aqui

O temporizador T0 tem um total de 16 bits, divididos em 8 bits altos TH0 e 8 bits baixos TL0. Portanto, um total de 2^16 números (65536) pode ser contado, e o ciclo de contagem de 1 número é 1,085us, então o padrão é começar a contar a partir de 0, e o tempo cumulativo é de cerca de 71ms.

3. Caso: Use o temporizador T0 para controlar o LED para ligar e desligar em intervalos de 1s.

Código ①:

#include <REGX52.H>

sbit LED1 = P3^7;
void main(void)
{
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	
/*1、选择定时器T0,并配置为16位定时器*/
	TMOD =0x01;							// 0000 0001
	
/*
	2、定一个10ms的时间,数1下需要1.085us
	10ms需要数则需要数9216下,那从65536-9126=56320
	从56320这里开始数,数9216下就到了65536。当超过了
	65536时就报表了,控制寄存器TCON的TF0由0变为1	
*/
	TL0 = 0x00; //0000 0000
	TH0 = 0xDC;//1101 1100
	
/*3、打开定时器T0*/
	TR0 = 1;
	
	TF0 = 0;//先个溢出标志清零
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

【Observação】

  • Após cada relatório, o cronômetro deve receber um novo valor inicial.
  • cnt aumenta em 1 a cada 10 milissegundos. Quando cnt aumenta para 100, significa que 1 segundo se passou.

Otimização de código②:

#include <REGX52.H>

sbit LED1 = P3^7;

void Timer0_Init_10ms(void)//定时器初始化10ms
{
	TMOD =0x01;							
	
	TL0 = 0x00; //0000 0000
	TH0 = 0xDC;//1101 1100
	
	TR0 = 1;
	TF0 = 0;
}

void main(void)
{ 
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	Timer0_Init_10ms();
	
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
			
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

Encapsule a inicialização do temporizador T0 em uma função e chame-a diretamente quando necessário.
Mas usar TMOD = 0x01; essa inicialização também apresenta falhas:

假如定时器T1正在使用,且为16位定时器。则TMOD的高4位应该为:0x1(0001)
而我们使用定时器T0时TMOD初始为0x01,则TMOD的高4位为0x0(0000),则把定时器T1变为一个13位定时器了。所以还需要改进
  • 1
  • 2

Otimização de código ③:

#include <REGX52.H>

sbit LED1 = P3^7;

void Timer0_Init_10ms(void)		//10毫秒@11.0592MHz
{
	//AUXR &= 0x7F;		//定时器时钟12T模式
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;		//设置定时器模式
	TL0 = 0x00;		//设置定时初值
	TH0 = 0xDC;		//设置定时初值
	TF0 = 0;		//清除TF0标志
	TR0 = 1;		//定时器0开始计时
}

void main(void)
{ 
	int cnt = 0;
	LED1 = 1;//先让灯熄灭的状态
	Timer0_Init_10ms();
	
	while(1)
	{
		if(TF0 == 1)//10ms报表了
		{	
			TF0 = 0;//软件清零,现在不使用中断
			TL0 = 0x00; //重新给初值
			TH0 = 0xDC;
			cnt++;
			if(cnt == 100)//数100次,相当于1s
			{
				cnt = 0;
				LED1 = !LED1;
			}
			
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

Descobrimos que a inicialização do TMOD é:

TMOD &= 0xF0;		//设置定时器模式
TMOD |= 0x01;		//设置定时器模式
  • 1
  • 2

Quais são os benefícios de inicializar assim?

假如定时器T1正在使用,且为16位定时器。则TMOD的高4位应该为:0x1(0001),而要使用定时器T0,且也为16位定时器,则TMOD =  0x11;
TMOD &= 0xF0;表示TMOD = TMOD & 0xf0,则与出来的TMOD = 0x10,由此可见,这一步就是让TMOD的高4位不变,低4位清零。
TMOD |= 0x01;表示TMOD = TMOD | 0x01,则或出来的TMOD = 0x11,由此可见,这一步就是让TMOD的高4位不变,低4位初始化。
通过这样初始化,既保证了TMOD的高4位不变(不改变定时器T1的初始化),由对低4位进行了改变(对定时器T0初始化)。
当然:也可以直让TMOD = 0x11;
  • 1
  • 2
  • 3
  • 4
  • 5