minhas informações de contato
Correspondência[email protected]
2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Aqui demonstramos como passar a entrada multimodal diretamente para o modelo. Para outros provedores de modelos que suportam entrada multimodal, o langchain fornece lógica inerente à classe para converter para o formato desejado.
A maneira mais comum de passar uma imagem é como uma string de bytes. Isso deve funcionar para a maioria dos conjuntos de modelos.
import base64
import httpx
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
response = model.invoke([message])
print(response.content)
Podemos fornecer diretamente o URL da imagem no bloco de conteúdo do tipo "image_URL". Observe, entretanto, que apenas alguns fornecedores de modelos oferecem suporte a esse recurso.
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{"type": "image_url", "image_url": {"url": image_url}},
],
)
response = model.invoke([message])
print(response.content)
Também podemos fazer upload de várias imagens.
message = HumanMessage(
content=[
{"type": "text", "text": "are these two images the same?"},
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "image_url", "image_url": {"url": image_url}},
],
)
response = model.invoke([message])
print(response.content)
Aqui, descrevemos como usar modelos de prompt para formatar entradas multimodais para modelos.
import base64
import httpx
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
prompt = ChatPromptTemplate.from_messages(
[
("system", "Describe the image provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data}"},
}
],
),
]
)
Também podemos passar várias imagens para o modelo.
prompt = ChatPromptTemplate.from_messages(
[
("system", "compare the two pictures provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
},
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
},
],
),
]
)
chain = prompt | model
response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)