Обмен технологиями

LangChain — шаблон подсказки для мультимодальных больших моделей

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina


1. Как напрямую перенести мультимодальные данные в модель

Здесь мы демонстрируем, как передавать мультимодальные входные данные непосредственно в модель. Для других поставщиков моделей, поддерживающих мультимодальный ввод, langchain предоставляет встроенную логику в классе для преобразования в желаемый формат.
Самый распространенный способ передачи изображения — это строка байтов. Это должно работать для большинства модельных ансамблей.

import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

Мы можем напрямую указать URL-адрес изображения в блоке контента типа «image_URL». Однако обратите внимание, что только некоторые поставщики моделей поддерживают эту функцию.

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Мы также можем загрузить несколько изображений.

message = HumanMessage(
    content=[
        {"type": "text", "text": "are these two images the same?"},
        {"type": "image_url", "image_url": {"url": image_url}},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

2. Как использовать мультимодальные подсказки

Здесь мы опишем, как использовать шаблоны подсказок для форматирования мультимодальных входных данных для моделей.

import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "Describe the image provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                }
            ],
        ),
    ]
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Мы также можем передать в модель несколько изображений.

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "compare the two pictures provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
                },
            ],
        ),
    ]
)

chain = prompt | model

response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23