Technologieaustausch

LangChain – Eingabeaufforderungsvorlage für multimodale große Modelle

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina


1. So übertragen Sie multimodale Daten direkt in das Modell

Hier zeigen wir, wie multimodale Eingaben direkt an das Modell übergeben werden. Für andere Modellanbieter, die multimodale Eingaben unterstützen, stellt Langchain in der Klasse inhärente Logik zur Konvertierung in das gewünschte Format bereit.
Die gebräuchlichste Art, ein Bild zu übergeben, ist die als Byte-String. Dies sollte für die meisten Modellensembles funktionieren.

import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
        },
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

Wir können die Bild-URL direkt im Inhaltsblock vom Typ „image_URL“ bereitstellen. Beachten Sie jedoch, dass nur einige Modellanbieter diese Funktion unterstützen.

message = HumanMessage(
    content=[
        {"type": "text", "text": "describe the weather in this image"},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Wir können auch mehrere Bilder hochladen.

message = HumanMessage(
    content=[
        {"type": "text", "text": "are these two images the same?"},
        {"type": "image_url", "image_url": {"url": image_url}},
        {"type": "image_url", "image_url": {"url": image_url}},
    ],
)
response = model.invoke([message])
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

2. So verwenden Sie mutimodale Eingabeaufforderungen

Hier beschreiben wir, wie Sie Eingabeaufforderungsvorlagen verwenden, um multimodale Eingaben für Modelle zu formatieren.

import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "Describe the image provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                }
            ],
        ),
    ]
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Wir können dem Modell auch mehrere Bilder übergeben.

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "compare the two pictures provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
                },
            ],
        ),
    ]
)

chain = prompt | model

response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23