Partage de technologie

Renesas R7FA8D1BH (Cortex®-M85) contrôle DS18B20

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina

Table des matières

Aperçu

1 Logiciel et matériel

1.1 Informations sur l'environnement logiciel et matériel

1.2 Informations sur la carte de développement

1.3 Informations sur le débogueur

Configuration 2 FSP et KEIL

2.1 Circuit d'interface matérielle

2.2 FSB configure les IO du DS18B20

2.3 Générer les fichiers du projet Keil

3 Code pilote DS18B20

3.1 Présentation du DS18B20

3.2 Implémentation du pilote DS18B20

3.2.1 Définition de l'état des E/S

3.2.2 Fonction de lecture de l'état des E/S

3.2.3 Autres fonctions

4 Procédures d'essai

4.1 Conception de la demande

4.2 Tests

5 accessoires


Renesas R7FA8D1BH (Cortex®-M85) contrôle DS18B20 et ADC pour réaliser la fonction de saut de deux pages

Aperçu

Cet article présente principalement un cas d'application complet conçu pour Renesas R7FA8D1BH (Cortex®-M85) : application des E/S du R7FA8D1BH pour implémenter un protocole de bus unique et réalisation de la fonction de pilotage du ds18b20. Il complète principalement la lecture de la valeur de température et le formatage de la valeur. Affichage sur l'OLED sur l'écran. Les données de température sont également envoyées au terminal du port série via le terminal du port série.

1 Logiciel et matériel

1.1 Informations sur l'environnement logiciel et matériel

Informations sur les logiciels et le matérielInformation sur la version
Microcontrôleur RenesasR7FA8D1BH
KeilMDK ARM 5.38
Version FSP5.3.0
Outil de débogage : N32G45XVL-STBLIEN DAP

1.2 Informations sur la carte de développement

L'auteur a choisi d'utiliser la carte de développement Wildfire Yaoyang_Renesas RA8. Le MCU de contrôle principal de cette carte est R7FA8D1BHECBD, et le cœur de 7FA8D1BHECBD est ARM Contex-M85.

1.3 Informations sur le débogueur

Pour la puce R7FA8D1BHECBD, le cœur utilisé est Cortex®-M85 Core, ST-LINK-V2 ou J-LINK-V9 ne prend pas en charge les fonctions de téléchargement et de débogage.Après de nombreuses tentatives, l'auteur a découvert queDécodeur N32G45XVLLe DAP-LINK fourni avec la carte peut télécharger et déboguer R7FA8D1BHECBD.

L'image ci-dessous est une image physique de la carte de développement N32G45XVL-STB :

Configuration 2 FSP et KEIL

2.1 Circuit d'interface matérielle

Le circuit d'interface du DS18B20 a été conçu sur la carte de développement Yaoyang_Renesas RA8, qui utilise l'interface P809 comme signal de contrôle DQ du DS18B20.

2.2 FSB configure les IO du DS18B20

Configurez P809 comme interface IO commune, puis configurez dynamiquement la sortie ou l'état de sortie de l'IO dans le code

2.3 Générer les fichiers du projet Keil

Après avoir terminé la configuration des paramètres de FSP, vous pouvez générer un projet. Ouvrez le fichier projet, sa structure est la suivante :

Créez le fichier ds18b20.c pour implémenter le code du pilote

3 Code pilote DS18B20

3.1 Présentation du DS18B20

L'auteur a déjà analysé en détail le timing et la logique de mise en œuvre du DS18B20 dans son article précédent, je ne le présenterai donc pas ici.

DS18B20 Application Note_Waveform de ds18b20 lisant des données-CSDN Blog

3.2 Implémentation du pilote DS18B20

3.2.1 Définition de l'état des E/S

Ligne 14 du code : Définissez la fonction step delay

Ligne 15 du code : Définir la fonction de retard de pas en ms

Ligne 18 du code : Définir le code PIN IO du DS18B20

Ligne 21 du code : configuration du port d'entrée

Ligne 22 du code : configuration du port de sortie

Ligne 24 du code : définir le niveau bas d'E/S

Ligne 25 du code : définir le niveau élevé d'IO

3.2.2 Fonction de lecture de l'état des E/S

Ligne 47 de code : Lire l'état des IO en mode entrée

3.2.3 Autres fonctions

Fonction : ds18b20Init, détecte si DS18B20 est en ligne

Fonction : ds18b20BlockModeProcess. Lire la valeur du DS18B20

  1. /**
  2. * @brief reset DS18B20
  3. * @note if reset ds18b20 sucess, the return value is TRUE
  4. * @param None
  5. * @retval True or Flalse
  6. */
  7. static uint8_t ds18b20Init( void )
  8. {
  9. uint16_t tempCnt = 0;
  10. bsp_io_level_t status;
  11. // Set PIN mode output
  12. DS_Mode_Out_PP();
  13. // Master pin is high
  14. DQ_SET_HIGH;
  15. timeDelayUS(10);
  16. // Master pin is low
  17. DQ_SET_LOW;
  18. // wait for 600 us
  19. timeDelayUS(750);
  20. // Set PIN mode input
  21. DS_Mode_IN_PUT();
  22. while(1)
  23. {
  24. status = DQ_RAD_PIN();
  25. if( status == 0)
  26. {
  27. tempCnt = 0;
  28. return TRUE;
  29. }
  30. else
  31. {
  32. timeDelayUS(1);
  33. tempCnt++;
  34. if( tempCnt > 480 )
  35. return FALSE;
  36. }
  37. }
  38. }
  39. static uint8_t readBit( void )
  40. {
  41. uint8_t readCnt = 2;
  42. uint8_t bitVal = 1;
  43. DQ_SET_LOW;
  44. timeDelayUS(3);
  45. DQ_SET_HIGH;
  46. timeDelayUS(5); // 15 us
  47. while(readCnt-- )
  48. {
  49. //read DQ value
  50. if( DQ_RAD_PIN() == 0)
  51. {
  52. bitVal = 0;
  53. }
  54. timeDelayUS(2); // 15 us
  55. }
  56. timeDelayUS(30); // 15 us
  57. return bitVal;
  58. }
  59. static uint8_t ds18b20ReadByte( void )
  60. {
  61. uint8_t byteVal = 0;
  62. for ( uint8_t i = 0; i < 8; i++ )
  63. {
  64. byteVal >>= 1;
  65. uint8_t bitVal = readBit();
  66. if( bitVal > 0)
  67. {
  68. byteVal |= 0x80;
  69. }
  70. }
  71. return byteVal;
  72. }
  73. /**
  74. * @brief write one byte to DS18B20
  75. * @note
  76. * @param byte: the data that is sended to ds18b20
  77. * @retval None
  78. */
  79. void ds18b20WriteByte( uint8_t byte)
  80. {
  81. unsigned char k;
  82. // Set PIN mode output
  83. DS_Mode_Out_PP();
  84. for ( k = 0; k < 8; k++ )
  85. {
  86. if (byte & (1<<k))
  87. {
  88. DQ_SET_LOW;
  89. timeDelayUS(2);
  90. DQ_SET_HIGH;
  91. timeDelayUS(65);
  92. }
  93. else
  94. {
  95. DQ_SET_LOW;
  96. timeDelayUS(65);
  97. DQ_SET_HIGH;
  98. timeDelayUS(2);
  99. }
  100. }
  101. }
  102. uint8_t ds18b20BlockModeProcess( void )
  103. {
  104. uint16_t tempValue;
  105. uint8_t tempL, tempH;
  106. if (ds18b20Init() == FALSE)
  107. {
  108. return FALSE;
  109. }
  110. // wait for 600 us
  111. timeDelayUS(600);
  112. ds18b20WriteByte(0xcc);
  113. ds18b20WriteByte(0x44); // start convert temperature
  114. if (ds18b20Init() == FALSE)
  115. {
  116. return FALSE;
  117. }
  118. // wait for 600 us
  119. timeDelayUS(600);
  120. ds18b20WriteByte(0xcc);
  121. ds18b20WriteByte(0xbe); // read temperature data register
  122. tempL = ds18b20ReadByte();
  123. tempH = ds18b20ReadByte();
  124. if (tempH > 0x7f)
  125. {
  126. tempL = ~tempL;
  127. tempH = ~tempH+1;
  128. st_ds1b20val.sign = 1;
  129. }
  130. tempValue = (uint16_t)((tempH << 8) | tempL);
  131. st_ds1b20val.temperatureVal = (float)(tempValue * 0.0625);
  132. return TRUE;
  133. }
  134. // NO blocking mode operate ds18b20
  135. uint8_t ds18b20NoBlockingProcess( void )
  136. {
  137. uint16_t tempValue;
  138. static uint16_t waitCnt = 0;
  139. uint8_t tempL, tempH;
  140. static uint8_t runState = 0;
  141. switch( runState )
  142. {
  143. default:
  144. case INIT_DQ:
  145. if (ds18b20Init() == FALSE)
  146. {
  147. return FALSE;
  148. }
  149. runState = WAIT_READY;
  150. break;
  151. case WAIT_READY:
  152. timeDelayUS(2); // IDEL
  153. runState = SKIDROM_CMD;
  154. break;
  155. case SKIDROM_CMD:
  156. ds18b20WriteByte(0xcc);
  157. ds18b20WriteByte(0x44); // begin to convert temperature data
  158. waitCnt = 0;
  159. runState = WAIT_CONVERT;
  160. break;
  161. case WAIT_CONVERT:
  162. waitCnt++;
  163. if( waitCnt > WAIT_CNT_CONVERT)
  164. {
  165. waitCnt = 0;
  166. runState = RESET_CMD;
  167. }
  168. break;
  169. case RESET_CMD:
  170. if (ds18b20Init() == FALSE)
  171. {
  172. return FALSE;
  173. }
  174. runState = WAIT_DATA_READY;
  175. break;
  176. case WAIT_DATA_READY:
  177. timeDelayUS(2); // IDEL
  178. runState = READ_CMD;
  179. break;
  180. case READ_CMD:
  181. ds18b20WriteByte(0xcc);
  182. ds18b20WriteByte(0xbe); // read temperature data register
  183. runState = GET_VALUE;
  184. break;
  185. case GET_VALUE:
  186. tempL = ds18b20ReadByte();
  187. tempH = ds18b20ReadByte();
  188. if (tempH > 0x7f)
  189. {
  190. tempL = ~tempL;
  191. tempH = ~tempH+1;
  192. st_ds1b20val.sign = 1;
  193. }
  194. tempValue = (uint16_t)((tempH << 8) | tempL);
  195. st_ds1b20val.temperatureVal = (float)(tempValue * 0.0625);
  196. runState = INIT_DQ;
  197. return TRUE;
  198. }
  199. return FALSE;
  200. }

4 Procédures d'essai

4.1 Conception de la demande

Ligne 113 du code : Lire la valeur de ds18b20

Ligne 130 du code : Obtenir les données de résultat de ds18b20

Ligne 131 du code : données d'affichage formatées

Ligne 132 de code : Afficher les données sur OLED

4.2 Tests

Compilez le code et téléchargez le code sur le tableau. Les résultats d'exécution sont les suivants :

5 accessoires

Code du pilote DS18B20

1) Créez le fichier ds18b20.c et écrivez le code suivant

  1. /*
  2. FILE NAME : ds18b20.c
  3. Description: user ds18b20 interface
  4. Date : 2024/06/03
  5. */
  6. #include "ds18b20.h"
  7. #include "hal_data.h"
  8. typedef enum{
  9. INPUT = 0,
  10. OUTPUT = 1,
  11. }IO_TYPE;
  12. typedef enum{
  13. FALSE = 0,
  14. TRUE = 1,
  15. }RETURN_RESULT;
  16. typedef enum{
  17. INIT_DQ = 0,
  18. WAIT_READY,
  19. SKIDROM_CMD,
  20. WAIT_CONVERT,
  21. RESET_CMD,
  22. READ_CMD,
  23. WAIT_DATA_READY,
  24. GET_VALUE,
  25. IDLE_NULL
  26. }RUN_STATE;
  27. ds18b20Struc st_ds1b20val;
  28. ds18b20Struc get_ds18b20_value( void )
  29. {
  30. return st_ds1b20val;
  31. }
  32. static bsp_io_level_t DQ_RAD_PIN(void)
  33. {
  34. bsp_io_level_t state;
  35. // READ io
  36. R_IOPORT_PinRead(&g_ioport_ctrl, DS_IO_PORT_PIN, &state);
  37. return state;
  38. }
  39. /**
  40. * @brief reset DS18B20
  41. * @note if reset ds18b20 sucess, the return value is TRUE
  42. * @param None
  43. * @retval True or Flalse
  44. */
  45. static uint8_t ds18b20Init( void )
  46. {
  47. uint16_t tempCnt = 0;
  48. bsp_io_level_t status;
  49. // Set PIN mode output
  50. DS_Mode_Out_PP();
  51. // Master pin is high
  52. DQ_SET_HIGH;
  53. timeDelayUS(10);
  54. // Master pin is low
  55. DQ_SET_LOW;
  56. // wait for 600 us
  57. timeDelayUS(750);
  58. // Set PIN mode input
  59. DS_Mode_IN_PUT();
  60. while(1)
  61. {
  62. status = DQ_RAD_PIN();
  63. if( status == 0)
  64. {
  65. tempCnt = 0;
  66. return TRUE;
  67. }
  68. else
  69. {
  70. timeDelayUS(1);
  71. tempCnt++;
  72. if( tempCnt > 480 )
  73. return FALSE;
  74. }
  75. }
  76. }
  77. static uint8_t readBit( void )
  78. {
  79. uint8_t readCnt = 2;
  80. uint8_t bitVal = 1;
  81. DQ_SET_LOW;
  82. timeDelayUS(3);
  83. DQ_SET_HIGH;
  84. timeDelayUS(5); // 15 us
  85. while(readCnt-- )
  86. {
  87. //read DQ value
  88. if( DQ_RAD_PIN() == 0)
  89. {
  90. bitVal = 0;
  91. }
  92. timeDelayUS(2); // 15 us
  93. }
  94. timeDelayUS(30); // 15 us
  95. return bitVal;
  96. }
  97. static uint8_t ds18b20ReadByte( void )
  98. {
  99. uint8_t byteVal = 0;
  100. for ( uint8_t i = 0; i < 8; i++ )
  101. {
  102. byteVal >>= 1;
  103. uint8_t bitVal = readBit();
  104. if( bitVal > 0)
  105. {
  106. byteVal |= 0x80;
  107. }
  108. }
  109. return byteVal;
  110. }
  111. /**
  112. * @brief write one byte to DS18B20
  113. * @note
  114. * @param byte: the data that is sended to ds18b20
  115. * @retval None
  116. */
  117. void ds18b20WriteByte( uint8_t byte)
  118. {
  119. unsigned char k;
  120. // Set PIN mode output
  121. DS_Mode_Out_PP();
  122. for ( k = 0; k < 8; k++ )
  123. {
  124. if (byte & (1<<k))
  125. {
  126. DQ_SET_LOW;
  127. timeDelayUS(2);
  128. DQ_SET_HIGH;
  129. timeDelayUS(65);
  130. }
  131. else
  132. {
  133. DQ_SET_LOW;
  134. timeDelayUS(65);
  135. DQ_SET_HIGH;
  136. timeDelayUS(2);
  137. }
  138. }
  139. }
  140. uint8_t ds18b20BlockModeProcess( void )
  141. {
  142. uint16_t tempValue;
  143. uint8_t tempL, tempH;
  144. if (ds18b20Init() == FALSE)
  145. {
  146. return FALSE;
  147. }
  148. // wait for 600 us
  149. timeDelayUS(600);
  150. ds18b20WriteByte(0xcc);
  151. ds18b20WriteByte(0x44); // start convert temperature
  152. if (ds18b20Init() == FALSE)
  153. {
  154. return FALSE;
  155. }
  156. // wait for 600 us
  157. timeDelayUS(600);
  158. ds18b20WriteByte(0xcc);
  159. ds18b20WriteByte(0xbe); // read temperature data register
  160. tempL = ds18b20ReadByte();
  161. tempH = ds18b20ReadByte();
  162. if (tempH > 0x7f)
  163. {
  164. tempL = ~tempL;
  165. tempH = ~tempH+1;
  166. st_ds1b20val.sign = 1;
  167. }
  168. tempValue = (uint16_t)((tempH << 8) | tempL);
  169. st_ds1b20val.temperatureVal = (float)(tempValue * 0.0625);
  170. return TRUE;
  171. }
  172. // NO blocking mode operate ds18b20
  173. uint8_t ds18b20NoBlockingProcess( void )
  174. {
  175. uint16_t tempValue;
  176. static uint16_t waitCnt = 0;
  177. uint8_t tempL, tempH;
  178. static uint8_t runState = 0;
  179. switch( runState )
  180. {
  181. default:
  182. case INIT_DQ:
  183. if (ds18b20Init() == FALSE)
  184. {
  185. return FALSE;
  186. }
  187. runState = WAIT_READY;
  188. break;
  189. case WAIT_READY:
  190. timeDelayUS(2); // IDEL
  191. runState = SKIDROM_CMD;
  192. break;
  193. case SKIDROM_CMD:
  194. ds18b20WriteByte(0xcc);
  195. ds18b20WriteByte(0x44); // begin to convert temperature data
  196. waitCnt = 0;
  197. runState = WAIT_CONVERT;
  198. break;
  199. case WAIT_CONVERT:
  200. waitCnt++;
  201. if( waitCnt > WAIT_CNT_CONVERT)
  202. {
  203. waitCnt = 0;
  204. runState = RESET_CMD;
  205. }
  206. break;
  207. case RESET_CMD:
  208. if (ds18b20Init() == FALSE)
  209. {
  210. return FALSE;
  211. }
  212. runState = WAIT_DATA_READY;
  213. break;
  214. case WAIT_DATA_READY:
  215. timeDelayUS(2); // IDEL
  216. runState = READ_CMD;
  217. break;
  218. case READ_CMD:
  219. ds18b20WriteByte(0xcc);
  220. ds18b20WriteByte(0xbe); // read temperature data register
  221. runState = GET_VALUE;
  222. break;
  223. case GET_VALUE:
  224. tempL = ds18b20ReadByte();
  225. tempH = ds18b20ReadByte();
  226. if (tempH > 0x7f)
  227. {
  228. tempL = ~tempL;
  229. tempH = ~tempH+1;
  230. st_ds1b20val.sign = 1;
  231. }
  232. tempValue = (uint16_t)((tempH << 8) | tempL);
  233. st_ds1b20val.temperatureVal = (float)(tempValue * 0.0625);
  234. runState = INIT_DQ;
  235. return TRUE;
  236. }
  237. return FALSE;
  238. }
  239. /* End of this file */

2) Créez le fichier ds18b20.h et écrivez le code suivant

  1. /*
  2. FILE NAME : ds18b20.h
  3. Description: user ds18b20 interface
  4. Date : 2024/06/03
  5. */
  6. #ifndef DS18B20_H
  7. #define DS18B20_H
  8. #include "hal_data.h"
  9. #define WAIT_CNT_CONVERT 500
  10. #define timeDelayUS(us) R_BSP_SoftwareDelay(us, BSP_DELAY_UNITS_MICROSECONDS);
  11. #define DS_DELAY_MS(ms) R_BSP_SoftwareDelay(ms, BSP_DELAY_UNITS_MILLISECONDS);
  12. #define DS_IO_PORT_PIN BSP_IO_PORT_08_PIN_09
  13. #define DS_Mode_IN_PUT() R_IOPORT_PinCfg(&g_ioport_ctrl, DS_IO_PORT_PIN, IOPORT_CFG_PORT_DIRECTION_INPUT)
  14. #define DS_Mode_Out_PP() R_IOPORT_PinCfg(&g_ioport_ctrl, DS_IO_PORT_PIN, IOPORT_CFG_PORT_DIRECTION_OUTPUT)
  15. #define DQ_SET_LOW R_IOPORT_PinWrite(&g_ioport_ctrl, DS_IO_PORT_PIN, BSP_IO_LEVEL_LOW)
  16. #define DQ_SET_HIGH R_IOPORT_PinWrite(&g_ioport_ctrl, DS_IO_PORT_PIN, BSP_IO_LEVEL_HIGH)
  17. typedef struct{
  18. float temperatureVal;
  19. bool sign;
  20. }ds18b20Struc;
  21. uint8_t ds18b20BlockModeProcess( void );
  22. ds18b20Struc get_ds18b20_value( void );
  23. #endif /* DS18B20_H */