Berbagi teknologi

[Statistik Matematika] Variabel 2-acak dan distribusi probabilitasnya

2024-07-12

한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina


1. Pengertian dan klasifikasi variabel acak

Definisi: Variabel acak adalah variabel yang mengambil nilai berbeda dalam suatu percobaan acak.

  1. Variabel acak kategoris (Nominal)

    • Contoh: Jenis Kelamin (laki-laki, perempuan), pekerjaan (PNS, pegawai perusahaan, pelajar, pensiunan, pengangguran), hasil tes (negatif, positif)
  2. Variabel acak kategorikal yang diurutkan (Diurutkan)

    • Contoh: sikap (sangat setuju, setuju, netral, tidak setuju, sangat tidak setuju), frekuensi penggunaan (seminggu sekali, dua minggu sekali, enam bulan sekali, hampir tidak pernah, tidak pernah)
  3. Variabel acak numerik

    • Contoh: Umur (13, 14, 15, 16...), penghasilan (bisa diisi nilai berapa saja)

2. Distribusi probabilitas diskrit

2.1 Distribusi Binomial

  • definisi: dijelaskan dalam tidak adaN Berhasil dalam uji coba independen kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu Peluang keberhasilan pada setiap percobaan adalah hal.P
  • rumus X ∼ Bin ( n , p ) X sim teks{Bin}(n, p)XTempat sampah(N,P)
  • Fungsi Massa Probabilitas (PMF) Bahasa Indonesia: P(X = k) = (nk) pk (1 − p) n − k P(X = k) = binomial{n}{k} p^k (1-p)^{nk}P(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuN)Paaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu(1P)Naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
  • Fungsi distribusi kumulatif (CDF) F(X = k) = ∑ i = 0 k(ni) pi(1 − p) n − i F(X = k) = jumlah_{i=0}^{k} binom{n}{i} p^i (1-p)^{ni}F(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=Saya=0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu(SayaN)PSaya(1P)NSaya

2.2 Distribusi Bernoulli

  • definisi: Menjelaskan probabilitas keberhasilan (atau kegagalan) dalam suatu eksperimen hal.P
  • rumus X ∼ Bern ( p ) X sim teks{Bern}(p)XKota Bern(P)
  • Fungsi Massa Probabilitas (PMF) P ( X = x ) = { p jika x = 1 1 − p jika x = 0 P(X = x) ={PjikaX=11PjikaX=0 P(X=X)={P1PjikaX=1jikaX=0
  • Fungsi distribusi kumulatif (CDF) F ( X = x ) = { 0 jika x &lt; 0 1 − p jika 0 ≤ x &lt; 1 1 jika x ≥ 1 F(X = x) ={0jikaX<01Pjika0X<11jikaX1 F(X=X)= 01P1jikaX<0jika0X<1jikaX1

2.3 Distribusi Geometris

  • definisi: Menjelaskan probabilitas jumlah kegagalan sebelum keberhasilan pertama hal.P
  • rumus X ∼ Geom ( p ) X sim teks{Geom}(p)XGeofisika(P)
  • Fungsi Massa Probabilitas (PMF) Persamaan (1-p) kp adalah persamaan yang menyatakan hubungan antara P(X = k) dan (1-p)^kp.P(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=(1P)aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuP
  • Fungsi distribusi kumulatif (CDF) Tentukanlah F(x) = 1 - (1 - p) k + 1!F(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=1(1P)aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+1

2.4 Distribusi Binomial Negatif

  • definisi: Menjelaskan jumlah kegagalan sebelum mencapai keberhasilan ke-r hal.P
  • rumus X ∼ NegBin ( r , p ) X sim teks{NegBin}(r, p)XNegBin(R,P)
  • Fungsi Massa Probabilitas (PMF) Persamaan (1-p) k = p(x) = k + r - 1 kP(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu+R1)PR(1P)aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
  • Fungsi distribusi kumulatif (CDF) F(X = k) = ∑ i = 0 k(i + r − 1 i) pr(1 − p) i F(X = k) = jumlah_{i=0}^{k} binom{i + r - 1}{i} p^r (1-p)^iF(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=Saya=0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu(SayaSaya+R1)PR(1P)Saya

2.5 Distribusi Hipergeometri

  • definisi: Menjelaskan pengambilan sampel dari populasi terbatas tanpa pengembalian tidak adaN kali, sukses kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu probabilitas kali.
  • rumus X ∼ Hipergeom ( N , K , n ) X sim teks{Hipergeom}(N, K, n)XHipergeom(N,Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: K,N)
  • Fungsi Massa Probabilitas (PMF) P ( X = k ) = ( K k ) ( N − K n − k ) ( N n ) P(X = k) = pecahan{binom{K}{k} binom{NK}{nk}}{binom{N}{n}}P(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=(NN)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuBahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: K)(NaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuNBahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: K)
  • Fungsi distribusi kumulatif (CDF) F ( X = k ) = ∑ i = 0 k ( K i ) ( N − K n − i ) ( N n ) F(X = k) = jumlah_{i=0}^{k} pecahan{binom{K}{i} binom{NK}{ni}}{binom{N}{n}}F(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=Saya=0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu(NN)(SayaBahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: K)(NSayaNBahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: Bahasa Inggris: K)

2.6 Distribusi Poisson

  • definisi: Deskripsi terjadi dalam satuan waktu kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu Peluang suatu kejadian, rata-rata laju terjadinya kejadian adalah λ.
  • rumus X ∼ Poisson ( λ ) X sim teks{Poisson}(lambda)XIkan(λ)
  • Fungsi Massa Probabilitas (PMF) Misalkan x = k , maka x = k . P(X = k) = frak{lambda^ke^{-lambda}}{k!}P(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!λaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuBahasa Inggris:λ
  • Fungsi distribusi kumulatif (CDF) F(X = k) = e − λ ∑ i = 0 k λ ii ! F(X = k) = e^{-lambda} jumlah_{i=0}^{k} pecahan{lambda^i}{i!}F(X=aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=Bahasa Inggris:λSaya=0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuSaya!λSaya

2.7 Hubungan di antara mereka

  • Distribusi Bernoulliadalah spesialdistribusi binomial,Kapan n=1 n=1 adalah bilangan bulat positif yang paling kecil.N=1 jam.
  • distribusi geometrisadalah distribusi jumlah percobaan yang diperlukan sebelum keberhasilan pertama, yang dapat dipandang sebagaidistribusi binomialperpanjangan.
  • distribusi binomial negatifdapat dilihat sebagaidistribusi geometrisGeneralisasi , digunakan untuk menggambarkan jumlah kegagalan yang diperlukan sebelum r berhasil.
  • distribusi hipergeometriMirip dengandistribusi binomial, tetapi cocok untuk populasi terbatas dan pengambilan sampel tanpa pengembalian.
  • distribusi racunYadistribusi binomialKasus batas dari tidak adaN sangat besar dan hal.P sangat muda, dan λ = tidak ada lambda = tidak adaλ=NP tetap konstan.

3. Distribusi probabilitas berkelanjutan

3.1 Distribusi Eksponensial

  • definisi: Distribusi eksponensial adalah distribusi probabilitas kontinu yang sering digunakan untuk menggambarkan interval waktu antara kejadian independen.

  • rumus X ∼ Eksponensial ( λ ) X sim text{Eksponensial}(lambda)XEksponensial(λ),di dalam λ &gt; 0 lambda&gt;0λ>0 adalah parameter laju

  • Fungsi Kepadatan Probabilitas (PDF) f ( x ; λ ) = λ e − λ x untuk x ≥ 0 f(x; lambda) = lambda e^{-lambda x} quad text{untuk } x geq 0F(X;λ)=λBahasa Inggris:λXuntukX0

  • Fungsi distribusi kumulatif (CDF) F ( x ; λ ) = 1 − e − λ x untuk x ≥ 0 F(x; lambda) = 1 - e^{-lambda x} quad text{untuk } x geq 0F(X;λ)=1Bahasa Inggris:λXuntukX0

3.2 Distribusi Gamma

  • definisi: Menjelaskan akumulasi waktu tunggu dan merupakan generalisasi dari distribusi eksponensial dan distribusi χ².

  • rumus X ∼ Gamma ( k , θ ) X sim teks{Gamma}(k, theta)XGamma(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,θ),di dalam k &gt; 0 k &gt; 0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu>0 adalah parameter bentuk, θ &gt; 0 theta&gt;0θ>0 adalah parameter skala

  • Fungsi Kepadatan Probabilitas (PDF) f ( x ; k , θ ) = xk − 1 e − x / θ θ k Γ ( k ) untuk x ≥ 0 f(x; k, theta) = frac{x^{k-1}e^{-x/theta}}{theta^k Gamma(k)} quad text{untuk } x geq 0F(X;aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,θ)=θaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuΓ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)Xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu1Bahasa Inggris:X/θuntukX0,di dalam Gamma (k)Γ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu) adalah fungsi gamma

  • Fungsi distribusi kumulatif (CDF) F(x; k, θ) = γ(k, x/θ) Γ(k) F(x; k, theta) = pecahan{gamma(k, x/theta)}{gamma(k)}F(X;aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,θ)=Γ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)γ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,X/θ),di dalam γ ( k , x / θ ) gamma(k, x/theta)γ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,X/θ) adalah fungsi gamma yang tidak lengkap.

3.3 Distribusi Normal

  • definisi: Menjelaskan distribusi jumlah sejumlah besar variabel acak independen dan banyak digunakan dalam ilmu alam dan ilmu sosial.

  • rumus X ∼ N ( μ , σ 2 ) X sim matematika{N}(mu, sigma^2)XN(μ,σ2),di dalam, μ muμ adalah nilai rata-rata, σ 2 sigma^2σ2 adalah variansnya

  • Fungsi Kepadatan Probabilitas (PDF) Bahasa Indonesia: f ( x ; μ , σ 2 ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x; mu, sigma^2) = pecahan{1}{akar{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}F(X;μ,σ2)=2πσ2 1Bahasa Inggris:2σ2(Xμ)2

  • Fungsi distribusi kumulatif (CDF) F ( x ; μ , σ 2 ) = 1 2 [ 1 + erf ⁡ ( x − μ 2 σ 2 ) ] F(x; mu, sigma^2) = frac{1}{2}kiri[1 + namaoperator{erf}kiri(frac{x-mu}{sqrt{2sigma^2}}kanan)kanan]F(X;μ,σ2)=21[1+erf(2σ2 Xμ)], dimana erf adalah fungsi kesalahan.

3,4 t-Distribusi

  • definisi: Digunakan untuk pengujian hipotesis dan estimasi interval kepercayaan dalam situasi sampel kecil.

  • rumus X ∼ t ( ν ) X sim t(nu)XT(ν),di dalam, aku sekarangν adalah derajat kebebasan

  • Fungsi Kepadatan Probabilitas (PDF) f ( t ; ν ) = Γ ( ν + 1 2 ) ν π Γ ( ν 2 ) ( 1 + t 2 ν ) − ν + 1 2 f(t; nu) = frac{Gammaleft(frac{nu+1}{2}kanan)}{sqrt{nupi} Gammaleft(frac{nu}{2}kanan)} kiri(1 + frac{t^2}{nu}kanan)^{-frac{nu+1}{2}}F(T;ν)=νπ Γ(2ν)Γ(2ν+1)(1+νT2)2ν+1

  • Fungsi distribusi kumulatif (CDF) Bahasa Indonesia: F ( t ; ν ) = 1 2 + t Γ ( ν + 1 2 ) π ν Γ ( ν 2 ) ∫ 0 t ( 1 + u 2 ν ) − ν + 1 2 du F(t; nu) = frac{1}{2} + tfrac{Gammaleft(frac{nu+1}{2}kanan)}{sqrt{pi nu} Gammaleft(frac{nu}{2}kanan)} int_0^{t} kiri(1 + frac{u^2}{nu}kanan)^{-frac{nu+1}{2}} duF(T;ν)=21+Tπν Γ(2ν)Γ(2ν+1)0T(1+νkamkamu2)2ν+1Dkamkamu

3.5 Distribusi Chi-Kuadrat

  • definisi: Biasa digunakan untuk pengujian hipotesis dan analisis varians.

  • rumus X ∼ χ 2 ( k ) X sim chi^2(k)Xχ2(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu),di dalam kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu adalah derajat kebebasan

  • Fungsi Kepadatan Probabilitas (PDF) f ( x ; k ) = 1 2 k / 2 Γ ( k / 2 ) xk / 2 − 1 e − x / 2 untuk x ≥ 0 f(x; k) = frac{1}{2^{k/2} Gamma(k/2)} x^{k/2-1} e^{-x/2} quad text{untuk } x geq 0F(X;aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu/2Γ(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu/2)1Xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu/21Bahasa Inggris:X/2untukX0

  • Fungsi distribusi kumulatif (CDF) F ( x ; k ) = γ ( k 2 , x 2 ) Γ ( k 2 ) F(x; k) = frac{gammaleft(frac{k}{2}, frac{x}{2}kanan)}{gammaleft(frac{k}{2}kanan)}F(X;aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)=Γ(2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu)γ(2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu,2X)

3.6 Distribusi-F

  • definisi: Digunakan untuk membandingkan varian dua sampel.

  • rumus X ∼ F ( d 1 , d 2 ) X simulasi F(d_1, d_2)XF(D1,D2),di dalam hari 1 hari_1D1 Dan hari ke 2 hari ke 2D2 adalah derajat kebebasan

  • Fungsi Kepadatan Probabilitas (PDF) Bahasa Indonesia: f ( x ; d 1 , d 2 ) = ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) untuk x ≥ 0 f(x; d_1, d_2) = frac{akar akar{frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x Bkiri(frac{d_1}{2}, frac{d_2}{2}kanan)} quad teks{untuk } x geq 0F(X;D1,D2)=XB(2D1,2D2)(D1X+D2)D1+D2(D1X)D1D2D2 untukX0,di dalam BBB adalah fungsi beta

  • Fungsi distribusi kumulatif (CDF) F ( x ; d 1 , d 2 ) = I d 1 xd 1 x + d 2 ( d 1 2 , d 2 2 ) F(x; d_1, d_2) = I_{frac{d_1 x}{d_1 x + d_2}}kiri(frac{d_1}{2}, frac{d_2}{2}kanan)F(X;D1,D2)=SAYAD1X+D2D1X(2D1,2D2),di dalam IISAYA adalah fungsi beta yang tidak lengkap

3.7 Hubungan di antara mereka

  • Distribusi chi-kuadratnya adalahjumlah kuadrat distribusi normal . Misalnya, kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu Jumlah kuadrat variabel normal standar bebas mengikuti derajat kebebasan sebagai kkaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaakuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu distribusi chi-kuadrat.
  • Distribusi t sudah masukDibangun berdasarkan distribusi normal standar dan distribusi chi-kuadrat dari. Secara khusus, distribusi t dapat diperoleh dengan membagi variabel normal standar dengan akar kuadrat dari variabel distribusi chi-kuadrat independennya.
  • Distribusi F adalahPerpanjangan rasio dua variabel independen yang terdistribusi chi-square . Distribusi F digunakan untuk membandingkan dua varian dan dibangun dengan mengambil rasio dua variabel yang terdistribusi chi-kuadrat.