2024-07-12
한어Русский языкEnglishFrançaisIndonesianSanskrit日本語DeutschPortuguêsΕλληνικάespañolItalianoSuomalainenLatina
Definitio: Temere variabilis variabilis est quae varias valores in experimento temere accipit.
Categorica temere variabilis (Nominal)
Categorica temere variabilis iussit (Iussit)
Numeralis temere variabilis
definitionDistributio exponentialis est continua probabilitas distributio saepe ad describendum tempora intervalla inter eventus independentes.
formula: X Exponentialis ( λ ) X sim text{Exponentialis} (lambda)X∼Exponentialis(λ),in λ > 0 lambda>0λ>0 est rate parametri
Probabilitas Density Function (PDF): f ( x ; λ ) = λ e λ x pro x ≥ 0 f(x; lambda) = lambda e^{-lambda x} quad{pro} x geq 0f******(x*******************************************;λ)=λe−λx*******************************************for*x*******************************************≥0
Munus cumulativum distributionis (CDF): F ( x ; λ ) = 1 e λ x pro x ≥ 0 F(x; lambda) = 1 - e^{-lambda x} quad{pro} x geq 0F(x*******************************************;λ)=1−e−λx*******************************************for*x*******************************************≥0
definition: Describitur tempus exspectationis cumulum et est generalisatio distributionis exponentiae et χ² distributio.
formula: X Gamma ( k , θ ) X sim text{Gamma}(k, theta)X∼Gamma(k,θ),in k > 0 k>0k>0 figura parametri; θ > 0 theta>0θ>0 scala parametri
Probabilitas Density Function (PDF): f ( x ; k , θ ) = xk 1 e x / θ θ k Γ ( k ) pro x ≥ 0 f(x; k, theta) = frac{x^{k-1}e^{-x /theta}}{theta^k Gamma(k)} quad text{pro} x geq 0f******(x*******************************************;k,θ)=θkΓ(k)x*******************************************k−1e−x*******************************************/θfor*x*******************************************≥0,in Γ ( k ) Gamma (k)Γ(k) gamma munus est
Munus cumulativum distributionis (CDF): F ( x ; k , θ ) = γ ( k , x / θ ) Γ ( k ) F(x; k, theta) = frac{gamma(k, x/theta)}{Gamma(k)}F(x*******************************************;k,θ)=Γ(k)γ(k,x*******************************************/θ),in γ ( k , x / θ ) gamma (k, x/theta)γ(k,x*******************************************/θ) gamma munus incompletum est.
definition: Distributio summae describitur permagnum numerum independens passim variabilium variarum et late in scientiis naturalibus et in scientiis socialibus.
formula: X N ( μ , σ 2) X sim*{N}(mu, sigma^2).X∼N(μ,σ2), in, μ muμ vilis pretii; σ 2 sigma^2σ2 sit dissidio
Probabilitas Density Function (PDF): f ( x ; μ , σ 2 ) = 1 2 π σ 2 e ( x − μ ) 2 2 σ 2 f(x; mu, sigma^2) = frac{1}{sqrt{2pisigma^2}} e ^{-frac{(x-mu)^2}{2sigma^2}}f******(x*******************************************;μ,σ2)=2πσ21e−2σ2(x*******************************************−μ)2
Munus cumulativum distributionis (CDF): F ( x ; μ , σ 2 ) = 1 2 [ 1 + erf ( x − μ 2 σ 2) ] F(x; mu, sigma^2) = frac{1}{2}left[1 + operatorname{ erf}left(frac{x-mu}{sqrt{2sigma^2}}right)right]F(x*******************************************;μ,σ2)=21[1+erf*(2σ2x*******************************************−μ)], ubi erroris munus erbe.
definition: usus pro hypothesi probatio et fiducia inter- estimatio in parvis casibus specimen.
formula: X t ( ν ) X sim t(nu)X∼t(ν), in, ν nuν gradus libertatis
Probabilitas Density Function (PDF): f ( t ; ν ) = Γ ( ν + 1 2 ) ν π Γ ( ν 2 ) ( 1 + t 2 ν ) − ν + 1 2 f(t; nu) = frac{Gammaleft(frac{nu+1} { { ius )}{ sqrt{nupi} Gammaleft(frac{nu}{2}right)} sinistra(1 + frac{t^2}{nu}right)^{-frac{nu+1}{2} }f******(t;ν)=νπΓ(2ν)Γ(2ν+1)(1+νt2)−2ν+1
Munus cumulativum distributionis (CDF): F ( t ; ν ) = 1 2 + t Γ ( ν + 1 2 ) π ν Γ ( ν 2 ) 0 t ( 1 + u 2 ν ) ν + 1 2 du F(t; nu) = frac{ 1}{2} + tfrac{Gammaleft(frac{nu+1}{2}right)}{sqrt{pi nu} Gammaleft(frac{nu}{2}right)} int_0^{t} left(1 + frac {u^2}{nu}right^{-frac{nu+1}{2}} duF(t;ν)=21+tπνΓ(2ν)Γ(2ν+1)∫0t(1+νu**2)−2ν+1d************************u**
definition: Communiter pro hypothesi probatio et analysis variantis.
formula: X χ 2 (k) X sim chi^2(k)X∼χ2(k),in kkk gradus libertatis
Probabilitas Density Function (PDF): f ( x ; k ) = 1 2 k / 2 Γ ( k / 2 ) xk / 2 1 e x / 2 pro x ≥ 0 f(x; k) = frac{1}{2^{k/2 } Gamma(k/2)} x^{k/2-1} e^{-x/2} quad text{pro } x geq 0f******(x*******************************************;k)=2k/2Γ(k/2)1x*******************************************k/2−1e−x*******************************************/2for*x*******************************************≥0
Munus cumulativum distributionis (CDF): F ( x ; k ) = γ ( k 2 , x 2 ) Γ ( k 2 ) F(x; k) = frac{gammaleft(frac{k}{2}, frac{x}{2}right)}{ Gammaleft(frac{k}{2}right)}F(x*******************************************;k)=Γ(2k)γ(2k,2x*******************************************)
definition: duo exempla comparare solebant.
formula: X F ( d 1 , d 2 ) X sim F (d_1, d_2)X∼F(d************************1,d************************2),in d 1 d_1d************************1 et d 2 d_2d************************2 gradus libertatis
Probabilitas Density Function (PDF): f ( x ; d 1 , d 2 ) = ( d 1 x ) d 1 d 2 d 2 ( d 1 x + d 2 ) d 1 + d 2 x B ( d 1 2 , d 2 2 ) pro x ≥ 0 f(x; d_1, d_2) = frac{sqrt{frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x Bleft(frac. {d_1}{2}, frac{d_2}{2}right)} quad text{pro} x geq 0f******(x*******************************************;d************************1,d************************2)=x*******************************************B(2d************************1,2d************************2)(d************************1x*******************************************+d************************2)d************************1+d************************2(d************************1x*******************************************)d************************1d************************2d************************2for*x*******************************************≥0,in BBB est beta munus
Munus cumulativum distributionis (CDF): F ( x ; d 1 , d 2 ) = I d 1 xd 1 x + d 2 ( d 1 2 , d 2 2 ) F(x; d_1, d_2) = I_{frac{d_1 x}{d_1 x + d_2 }}reliquit(frac{d_1}{2}, frac{d_2}{2} right)F(x*******************************************;d************************1,d************************2)=egod************************1x*******************************************+d************************2d************************1x*******************************************(2d************************1,2d************************2),in IIego est incompleta beta munus